专题:黄河流域生态保护

青藏高原高寒湿地生态系统演变、修复与保护

  • 赵志刚 ,
  • 史小明
展开
  • 兰州大学生命科学学院, 草地农业生态国家重点实验室, 兰州 730000
赵志刚,教授,研究方向为植物生态学、恢复生态学,电子信箱:zhaozhg@lzu.edu.cn

收稿日期: 2020-05-06

  修回日期: 2020-07-20

  网络出版日期: 2020-09-15

基金资助

国家重点研发计划项目(2017YFC0504801)

Ecosystem evolution of alpine wetland in Tibetan Plateau and consideration for ecological restoration and conservation

  • ZHAO Zhigang ,
  • SHI Xiaoming
Expand
  • State Key Laboratory of Grassland Agro-ecosystems;School of Life Sciences, Lanzhou University, Lanzhou 730020, China

Received date: 2020-05-06

  Revised date: 2020-07-20

  Online published: 2020-09-15

摘要

探讨了青藏高原高寒湿地的动态变化及演变趋势,分析了湿地面积变化、生态系统结构与功能退化现状与原因。分析表明,国家近20年来在青藏高原实施的生态保护、修复及生态工程项目取得了一定的成效,但高寒湿地生态系统的退化形势依然严峻。生态保护和修复是一项系统、长期的工作,今后要加强生态修复技术研发项目与工程类项目的衔接,建立长效管理机制,提高退化湿地的自然恢复能力。同时,要构建适于青藏高原高寒湿地保护效应的评价模型和指标体系,完善重大工程项目的系统监测与评价。在黄河、长江上游源区布局高寒湿地生态系统的长期监测,将与三江源区同样重要的黄河首曲湿地、若尔盖湿地纳入国家公园管理体系,统筹规划,建立健全科技服务平台和信息共享机制。

本文引用格式

赵志刚 , 史小明 . 青藏高原高寒湿地生态系统演变、修复与保护[J]. 科技导报, 2020 , 38(17) : 33 -41 . DOI: 10.3981/j.issn.1000-7857.2020.17.003

Abstract

Tibetan Plateau as a shelter plays an important role in ecological security in China, even in Asia, which is also the key source region of many rivers. Under the joint effects of global changes and anthropogenic activities, many serious ecological and environmental issues have occurred in Tibetan Plateau. Particularly, typical alpine wetland generally shows a trend of degradation. By analyzing the current studies of wetland area change and degradation in the structure and function of ecosystems and potential causes of wetland degradation, this study addresses dynamical changes and evolutional trend of alpine wetland in Tibetan Plateau. The ecological protection and restoration projects conducted by Chinese government have played a large role in recent twenty years, but the degradation of alpine wetland is still a great challenge. As a long-term work, it is needed to strengthen the active cooperation of technology research and development projects and engineering projects of ecological restoration in the future and to increase natural capacity of recovery of wetland through establishing a long-term management mechanism. At the same time, to construct complete evaluation models and indicator systems for protection of alpine wetland, and further to improve monitoring system and evaluating system for project implementation effect are necessary. By conducting a long-term ecological monitoring for alpine wetland ecosystem in the source regions of the Yellow River and Yangtse Rive, Shouqu wetland of Yellow river and Zoige wetland should be merged into the management scope of National Park as Sanjiangyuan, which can be planed as a whole to establish a platform of scientific service and mechanism of information sharing.

参考文献

[1] 孙鸿烈, 郑度, 姚檀栋, 等. 青藏高原国家生态安全屏障保护与建设[J]. 地理学报, 2012, 67(1):3-12.
[2] 沈大军, 陈传友. 青藏高原水资源及其开发利用[J]. 自然资源学报, 1996, 11(1):8-14.
[3] 邢宇, 姜琦刚, 李文庆, 等. 青藏高原湿地景观空间格局的变化[J]. 生态环境学报, 2009, 18(3):1010-1015.
[4] 赵志龙, 张镱锂, 刘林山, 等. 青藏高原湿地研究进展[J]. 地理科学进展, 2014, 33(9):1218-1230.
[5] 白军红, 欧阳华, 徐惠风, 等. 青藏高原湿地研究进展[J]. 地理科学进展, 2004, 23(4):1-9.
[6] 张鑫, 吴艳红, 张鑫. 1972-2012年青藏高原中南部内陆湖泊的水位变化[J]. 地理学报, 2014, 69(7):993-1001.
[7] 刘志伟, 李胜男, 韦玮, 等. 近三十年青藏高原湿地变化及其驱动力研究进展[J]. 生态学杂志, 2019, 38(3):856-862.
[8] 吴建普, 罗红, 朱雪林, 等. 西藏湿地分布特点分析[J]. 湿地科学, 2015, 13(5):559-562.
[9] 陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015, 60(32):3023-3035.
[10] 王根绪, 李元寿, 王一博, 等. 近40年来青藏高原典型高寒湿地系统的动态变化[J]. 地理学报, 2007, 62(5):481-491.
[11] Zhao Z L, Zhang Y L, Liu L S, et al. Recent changes in wetlands on the Tibetan Plateau:A review[J]. Journal of Geographical Sciences, 2015, 25(7):879-896.
[12] Shen G, Yang X, Jin Y, et al. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China[J]. Ecological Indicators, 2019, 104:48-58.
[13] 车向红, 冯敏, 姜浩, 等. 2000-2013年青藏高原湖泊面积MODIS遥感监测分析[J]. 地球信息科学学报, 2015(1):99-107.
[14] Niu Z, Zhang H, Gong P. More protection for China's wetlands[J]. Nature, 2011, 471(7338):305.
[15] 张宪洲, 杨永平, 朴世龙, 等. 青藏高原生态变化[J]. 科学通报, 2015, 60(32):3048-3056.
[16] Xue Z, Lü X, Chen Z, et al. Spatial and temporal changes of wetlands on the Qinghai-Tibetan Plateau from the 1970s to 2010s[J]. Chinese Geographical Science, 2018, 28(6):935-945.
[17] 万玮, 肖鹏峰, 冯学智, 等. 卫星遥感监测近30年来青藏高原湖泊变化[J]. 科学通报, 2014, 59(8):701-714.
[18] 张淑萍, 张虎才, 陈光杰, 等. 1973-2010年青藏高原西部昂拉仁错流域气候、冰川变化与湖泊响应[J]. 冰川冻土, 2012, 34(2):267-276.
[19] 李均力, 盛永伟. 1976-2009年青藏高原内陆湖泊变化的时空格局与过程[J]. 干旱区研究, 2013, 30(4):571-581.
[20] 侯蒙京, 高金龙, 葛静, 等. 青藏高原东部高寒沼泽湿地动态变化及其驱动因素研究[J]. 草业学报, 2020, 29(1):13-27.
[21] Zhao L, Ping C, Yang D, et al. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China[J]. Global & Planetary Change, 2004, 43:19-31.
[22] Li X, Pan X, Guo J, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 17(12):33-42.
[23] Zhang Y, Wang G, Wang Y. Changes in alpine wetland ecosystems of the Qinghai-Tibetan plateau from 1967 to 2004[J]. Environmental Monitoring and Assessment, 2011, 180(1):189-199.
[24] Zhang W, Yi Y, Song K, et al. Hydrological response of alpine wetlands to climate warming in the eastern Tibetan Plateau[J]. Remote Sensing, 2016, 8(4):336.
[25] Niu Z, Zhang H, Wang X, et al. Mapping wetland changes in China between 1978 and 2008[J]. Chinese Science Bulletin, 2012, 57(22):2813-2823.
[26] Yao T, Thompson L, Yang W. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2:663-667.
[27] Li J, Shi W. Effects of alpine swamp wetland change on rainfall season runoff and flood characteristics in the headwater area of the Yangtze River[J]. Catena, 2015, 127:116-123.
[28] Li B, Yu Z, Liang Z, et al. Effects of climate variations and human activities on runoff in the Zoige Alpine Wetland in the eastern edge of the Tibetan Plateau[J]. Journal of Hydrologic Engineering, 2014, 19(5):1026-1035.
[29] Xiang S, Guo R, Wu N, et al. Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau[J]. Ecological Engineering, 2009, 35(4):553-562.
[30] 杨永兴. 若尔盖高原生态环境恶化与沼泽退化及其形成机制[J]. 山地学报, 1999, 17(4):318-323.
[31] Li Z, Wang Z, Brierley G, et al. Shrinkage of the Ruoergai Swamp and changes to landscape connectivity, Qinghai-Tibet Plateau[J]. Catena, 2015, 126:155-163.
[32] Huo L, Chen Z, Zou Y. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon[J]. Ecological Engineering, 2013, 51(Pt.A):287-295.
[33] 何池全, 赵魁义. 若尔盖高原湿地生物多样性保护及其可持续利用[J]. 自然资源学报, 1999, 14(3):238-244.
[34] 韩大勇, 杨永兴, 杨杨. 若尔盖高原退化沼泽群落植物多样性及种间相关性沿排水梯度的变化[J]. 植物生态学报, 2012, 36(5):411-419.
[35] Wu G L, Wang D, Shi Z H, et al. Above- and belowground response to soil water change in an alpine wetland ecosystem on the Qinghai-Tibetan Plateau, China[J]. Journal of Hydrology, 2013, 476(4):120-127.
[36] Ren G H, Deng B, Shang Z H, et al. Plant communities and soil variations along a successional gradient in an alpine wetland on the Qinghai-Tibetan Plateau[J]. Ecological Engineering, 2013, 61(Pt.A):110-116.
[37] Luan J, Cui L, Xiang C, et al. Soil carbon stocks and quality across intact and degraded alpine wetlands in Zoige, east Qinghai-Tibet Plateau[J]. Wetlands Ecology & Management, 2014, 22(4):427-438.
[38] Gao J, Zhang X, Lei G, et al. Soil organic carbon and its fractions in relation to degradation and restoration of wetlands on the Zoigê Plateau, China[J]. Wetlands, 2014, 34(2):235-241.
[39] 李飞, 刘振恒, 贾甜华, 等. 高寒湿地和草甸退化及恢复对土壤微生物碳代谢功能多样性的影响[J]. 生态学报, 2018, 38(17):6006-6015.
[40] 何贵永, 孙浩智, 史小明, 等. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应[J]. 草业学报, 2015, 24(4):12-20.
[41] Shang Z H, Feng Q S, Wu G L. Grasslandification has significant impacts on soil carbon, nitrogen and phosphorus of alpine wetlands on the Tibetan Plateau[J]. Ecological Engineering, 2013, 58(4):170-179.
[42] 李宏林, 徐当会, 杜国祯. 青藏高原高寒沼泽湿地在退化梯度上植物群落组成的改变对湿地水分状况的影响[J]. 植物生态学报, 2012, 36(5):403-410.
[43] Wu P, Zhang H, Cui L, et al. Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau[J]. Scientific Reports, 2017, 7(1):837.
[44] Li N, Wang G, Yang Y, et al. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau[J]. Soil Biology & Biochemistry, 2011, 43(5):942-953.
[45] Yang G, Chen H, Wu N, et al. Effects of soil warming, rainfall reduction and water table level on CH 4 emissions from the Zoige peatland in China[J]. Soil Biology and Biochemistry, 2014, 78(2014):83-89.
[46] Hirota M, Tang Y, Hu Q, et al. The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau[J]. Atmospheric Environment, 2005, 39(29):5255-5259.
[47] 陈槐, 高永恒, 姚守平, 等. 若尔盖高原湿地甲烷排放的时空异质性[J]. 生态学报, 2008, 28(7):3425-3437.
[48] Mitsch W J, Nahlik A, Wolski P, et al. Tropical wetlands:seasonal hydrologic pulsing, carbon sequestration, and methane emissions[J]. Wetlands Ecology and Management, 2010, 18(5):573-586.
[49] 周文昌, 崔丽娟, 王义飞, 等. 放牧对若尔盖高原湿地CH 4排放的影响[J]. 生态学报, 2017, 37(3):851-859.
[50] Cui L, Kang X, Li W, et al. Rewetting decreases carbon emissions from the Zoige alpine peatland on the Tibetan Plateau[J]. Sustainability, 2017, 9(6):948.
[51] Wei D, Xu R, Tarchen T, et al. Revisiting the role of CH 4 emissions from alpine wetlands on the Tibetan Plateau:evidence from two in situ measurements at 4758 and 4320 m above sea level[J]. Journal of Geophysical Research Biogeosciences, 2015, 120(9):473-484.
[52] 胡启武, 吴琴, 刘影, 等. 湿地碳循环研究综述[J]. 生态环境学报, 2009, 18(6):2381-2386.
[53] Zhang H, Yao Z, Ma L, et al. Annual methane emissions from degraded alpine wetlands in the eastern Tibetan Plateau[J]. Science of the Total Environment, 2019, 657(2019):1323-1333.
[54] Luan J, Liu S, Wu J, et al. The transient shift of driving environmental factors of carbon dioxide and methane fluxes in Tibetan peatlands before and after hydrological restoration[J]. Agricultural & Forest Meteorology, 2018, 250-251:138-146.
[55] Wang J, Wang G, Hu H, et al. The influence of degradation of the swamp and alpine meadows on CH4 and CO2 fluxes on the Qinghai-Tibetan Plateau[J]. Environmental Geology, 2010, 60(3):537-548.
[56] Falk J M, Schmidt N M, Strom L. Effects of simulated increased grazing on carbon allocation patterns in a high arctic mire[J]. Biogeochemistry, 2014, 119:229-244.
[57] 邵全琴, 刘纪远, 黄麟, 等. 2005-2009年三江源自然保护区生态保护和建设工程生态成效综合评估[J]. 地理研究, 2013, 32(9):1645-1656.
[58] 摆万奇, 土艳丽, 李建川, 等. 筑坝在湿地恢复中的作用:以拉萨市拉鲁湿地为例[J]. 资源科学, 2010, 32(9):1666-1671.
[59] Zhang Y, Wang C, Bai W, et al. Alpine wetlands in the Lhasa River Basin, China[J]. Journal of Geographical Sciences, 2010, 20(3):375-388.
[60] 徐新良, 王靓, 李静, 等. 三江源生态工程实施以来草地恢复态势及现状分析[J]. 地球信息科学学报, 2017, 19(1):50-58.
[61] Wang G, Li Y, Chen L, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau[J]. Science in China (Series D), 2006, 49(11):1156-1169.
[62] Zhang X H, Liu H Y, Baker C, et al. Restoration approaches used for degraded peatlands in Ruoergai (Zoige), Tibetan Plateau, China, for sustainable land management[J]. Ecological Engineering, 2012, 38(1):86-92.
[63] Ma M, Zhou X, Ma Z, et al. Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau[J]. Plant and Soil, 2011, 346:19-28.
[64] Ma Z, Ma M, Zhou X. Composition of the soil seed bank and vegetation changes after wetland drying and soil salinization on the Tibetan Plateau[J]. Ecological Engineering, 2012, 44(3):18-24.
[65] Yang G, Peng C, Chen H, et al. Qinghai-Tibetan Plateau peatland sustainable utilization under anthropogenic disturbances and climate change[J]. Ecosystem Health and Sustainability, 2017, 3(3):e01263.
[66] 付梦娣, 田俊量, 朱彦鹏, 等. 三江源国家公园功能分区与目标管理[J]. 生物多样性, 2017, 25(1):71-79.
文章导航

/