[1] De Gennes P G. Soft matter[J]. Reviews of Modern Physics, 1992, 64(3):645-648.
[2] 李涛, 陈科, Dobnikar J. 双连续型乳液凝胶(Bijel)的研究进展[J]. 物理学报, 2018, 67(14):7-18.
[3] Stratford K, Adhikari R, Pagonabarraga I, et al. Colloidal jamming at interfaces:A route to fluid-bicontinuous gels[J]. Science, 2005, 309(5744):2198-2201.
[4] Clegg P S, Herzig E M, Schofield A B, et al. Emulsification of partially miscible liquids using colloidal particles:Nonspherical and extended domain structures[J]. Langmuir, 2007, 23(11):5984-5994.
[5] Herzig E M, White K A, Schofield A B, et al. Bicontinuous emulsions stabilized solely by colloidal particles[J]. Nature Materials, 2007, 6(12):966-971.
[6] Jaeger H M. Celebrating soft matter's 10th anniversary:Toward jamming by design[J]. Soft Matter, 2015, 11(1):12-27.
[7] Liu A J, Nagel S R. Jamming is not just cool any more[J]. Nature, 1998, 396(6706):21-22.
[8] Li Y, Liu X, Zhang Z, et al. Adaptive structured pickering emulsions and porous materials based on cellulose nanocrystal surfactants[J]. Angewandte Chemie, International Edition in English, 2018, 57(41):13560-13564.
[9] Shi S, Qian B, Wu X, et al. Self-assembly of MXene-surfactants at liquid-liquid interfaces:From structured liquids to 3D aerogels[J]. Angewandte Chemie, International Edition in English, 2019, 58(50):18171-18176.
[10] Forth J, Liu X, Hasnain J, et al. Reconfigurable printed liquids[J]. Advanced Materials, 2018, 30(16):e1707603.
[11] Feng W, Chai Y, Forth J, et al. Harnessing liquid-inliquid printing and micropatterned substrates to fabricate 3-dimensional all-liquid fluidic devices[J]. Nature Communications, 2019, 10(1):1095.
[12] Yang Z, Wei J, Sobolev Y I, et al. Systems of mechanized and reactive droplets powered by multi-responsive surfactants[J]. Nature, 2018, 553(7688):313-318.
[13] Bhattacharjee T, Zehnder S M, Rowe K G, et al. Writing in the granular gel medium[J]. Science Advances, 2015, 1(8):e1500655.
[14] Murphy S V, Atala A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8):773-785.
[15] Bertassoni L E, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs[J]. Lab Chip, 2014, 14(13):2202-2211.
[16] Wu W, Deconinck A, Lewis J A. Omnidirectional printing of 3D microvascular networks[J]. Advanced Materials, 2011, 23(24):H178-183.
[17] Pi Q, Maharjan S, Yan X, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues[J]. Advanced Materials, 2018, 30(43):e1706913.
[18] Kolesky D B, Truby R L, Gladman A S, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs[J]. Advanced Materials, 2014, 26(19):3124-3130.
[19] Villar G, Graham A D, Bayley H. A tissue-like printed material[J]. Science, 2013, 340(6128):48-52.
[20] Qian F, Zhu C, Knipe J M, et al. Direct writing of tunable living inks for bioprocess intensification[J]. Nano Letters, 2019, doi:10.1021/acs.nanolett.9b00066.
[21] Etienne G, Ong I L H, Amstad E. Bioinspired viscoelastic capsules:Delivery vehicles and beyond[J]. Advanced Materials, 2019, 31(27):e1808233.
[22] Wang L, Quan P, Chen S H, et al. Stability of ligands on nanoparticles regulating the integrity of biological membranes at the nano-lipid interface[J]. ACS Nano, 2019, 13(8):8680-8693.
[23] Melchels F P W, Domingos M A N, Klein T J, et al. Additive manufacturing of tissues and organs[J]. Progress in Polymer Science, 2012, 37(8):1079-1104.
[24] Chen S, Cheng H, Meng J, et al. Hierarchical micromesoporous carbon frameworks-based hybrid nanofibres for high-dense capacitive energy storage[J]. Angewandte Chemie, International Edition in English, 2019, doi:10.1002/anie.201911023.
[25] Zhang C J, Mckeon L, Kremer M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10(1):1795.
[26] Cain J D, Azizi A, Maleski K, et al. Sculpting liquids with two-dimensional materials:The assembly of Ti3C2Tx MXene sheets at liquid-liquid interfaces[J]. ACS Nano, 2019, doi:10.1021/acsnano.9b05088.
[27] Weber A Z, Mench M M, Meyers J P, et al. Redox flow batteries:A review[J]. Journal of Applied Electrochemistry, 2011, 41(10):1137-1164.
[28] Tian Z, Zhao Y, Wang S, et al. Highly stretchable and conductive composite based on emulsion-templated silver nanowire aerogel[J]. Journal of Materials Chemistry A, 2020, doi:10.1039/C9TA11225A.
[29] Mcquade D T, Seeberger P H. Applying flow chemistry:Methods, materials, and multistep synthesis[J]. Journal of Organic Chemistry, 2013, 78(13):6384-6389.
[30] Myers R M, Fitzpatrick D E, Turner R M, et al. Flow chemistry meets advanced functional materials[J]. Chemistry, 2014, 20(39):12348-12366.
[31] Wegner J, Ceylan S, Kirschning A. Flow chemistry-A key enabling technology for (multistep) organic synthesis[J]. Advanced Synthesis & Catalysis, 2012, 354(1):17-57.
[32] Liu J, Yang H, Liu K, et al. Gel-emulsion templated polymeric aerogels for water treatment through organic liquid removing and solar vapor generation[J]. ChemSusChem, 2019, doi:10.1021/acs.analchem.9b03096.
[33] Ramsden W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surfacemembranes, bubbles, emulsions, and mechanical coagulation)-Preliminary account[J]. Proceedings of the royal Society of London, 1904, 72(477-486):156-164.
[34] Pickering S U. Cxcvi.-Emulsions[J]. Journal of the Chemical Society, Transactions, 1907, 91:2001-2021.
[35] Pieranski P. Two-dimensional interfacial colloidal crystals[J]. Physical Review Letters, 1980, 45(7):569.
[36] Aveyard R, Binks B P, Clint J H. Emulsions stabilised solely by colloidal particles[J]. Advances in Colloid and Interface Science, 2003, 100-102:503-546.
[37] Binks B P, Clint J H. Solid wettability from surface energy components:Relevance to pickering emulsions[J]. Langmuir, 2002, 18(4):1270-1273.
[38] Shi S, Russell T P. Nanoparticle assembly at liquid-liquid interfaces:From the nanoscale to mesoscale[J]. Advanced Materials, 2018, doi:10.1002/adma.201800714.
[39] Binks B P. Particles as surfactants-Similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1):21-41.
[40] Binks B P, Lumsdon S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23):8622-8631.
[41] Lin Y, Skaff H, Emrick T, et al. Nanoparticle assembly and transport at liquid-liquid interfaces[J]. Science, 2003, 299(5604):226-229.
[42] Lin Y, Böker A, Skaff H, et al. Nanoparticle assembly at fluid interfaces:Structure and dynamics[J]. Langmuir, 2005, 21(1):191-194.
[43] Kutuzov S, He J, Tangirala R, et al. On the kinetics of nanoparticle self-assembly at liquid/liquid interfaces[J]. Physical Chemistry Chemical Physics, 2007, 9(48):6351-6358.
[44] Cui M, Emrick T, Russell T P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles[J]. Science, 2013, 342(6157):460-463.
[45] Sun Z, Feng T, Russell T P. Assembly of graphene oxide at water/oil interfaces:Tessellated nanotiles[J]. Langmuir, 2013, 29(44):13407-13413.
[46] Huang C, Sun Z, Cui M, et al. Structured liquids with pH-triggered reconfigurability[J]. Advanced Materials, 2016, 28(31):6612-6618.
[47] Li R, Chai Y, Jiang Y, et al. Carboxylated Fullerene at the oil/water interface[J]. ACS Applied Materials & Interfaces, 2017, 9(39):34389-34395.
[48] Huang C, Cui M, Sun Z, et al. Self-regulated nanoparticle assembly at liquid/liquid interfaces:A Route to adaptive structuring of liquids[J]. Langmuir, 2017, 33(32):7994-8001.
[49] Chai Y, Lukito A, Jiang Y, et al. Fine-tuning nanoparticle packing at water-oil interfaces using ionic strength[J]. Nano Letters, 2017, 17(10):6453-6457.
[50] Cates M E, Clegg P S. Bijels:A new class of soft materials[J]. Soft Matter, 2008, doi:10.1039/b807312k.
[51] Mohraz A. Interfacial routes to colloidal gelation[J]. Current Opinion in Colloid & Interface Science, 2016, 25:89-97.
[52] Haase M F, Stebe K J, Lee D. Continuous fabrication of hierarchical and asymmetric Bijel microparticles, fibers, and membranes by solvent transfer-induced phase separation (STRIPS)[J]. Advanced Materials, 2015, 27(44):7065-7071.
[53] Lee M N, Thijssen J H J, Witt J A, et al. Making a robust interfacial scaffold:Bijel Rheology and its link to processability[J]. Advanced Functional Materials, 2013, 23(4):417-423.
[54] White K A, Schofield A B, Wormald P, et al. Inversion of particle-stabilized emulsions of partially miscible liquids by mild drying of modified silica particles[J]. Journal of Colloid and Interface Science, 2011, 359(1):126-135.
[55] Tavacoli J W, Thijssen J H J, Schofield A B, et al. Novel, robust, and versatile bijels of nitromethane, ethanediol, and colloidal silica:Capsules, sub-ten-micrometer domains, and mechanical properties[J]. Advanced Functional Materials, 2011, 21(11):2020-2027.
[56] Lee M N, Mohraz A. Bicontinuous macroporous materials from Bijel templates[J]. Advanced Materials, 2010, 22(43):4836-4841.
[57] Haase M F, Sharifi-Mood N, Lee D, et al. In situ mechanical testing of nanostructured Bijel fibers[J]. ACS Nano, 2016, 10(6):6338-6344.
[58] Cai D, Richter F H, Thijssen J H J, et al. Direct transformation of bijels into bicontinuous composite electrolytes using a pre-mix containing lithium salt[J]. Materials Horizons, 2018, 5(3):499-505.
[59] Thorson T J, Gurlin R E, Botvinick E L, et al. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization[J]. Acta Biomaterialia, 2019, 94:173-182.
[60] White K, Schofield A, Binks B, et al. Influence of particle composition and thermal cycling on Bijel formation[J]. Journal of Physics:Condensed Matter, 2008, 20(49):494223.
[61] Cai D, Clegg P S, Li T, et al. Bijels formed by direct mixing[J]. Soft Matter, 2017, 13(28):4824-4829.
[62] Huang C, Forth J, Wang W, et al. Bicontinuous structured liquids with sub-micrometre domains using nanoparticle surfactants[J]. Nature Nanotechnology, 2017, 12(11):1060-1063.
[63] Shi S, Liu X, Li Y, et al. Liquid Letters[J]. Advanced Materials, 2018, 30(9):1705800.
[64] Chen J-T, Zhang M, Russell T P. Instabilities in nanoporous media[J]. Nano Letters, 2007, 7(1):183-187.
[65] Rayleigh L. On the capillary phenomena of jets[J]. Proceedings of the Royal Society of London, 1879, 29(196-199):71-97.
[66] Plateau J. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires[M]. Paris:Gauthier-Villars, 1873.
[67] Toor A, Helms B A, Russell T P. Effect of nanoparticle surfactants on the breakup of free-falling water jets during continuous processing of reconfigurable structured liquid droplets[J]. Nano Letters, 2017, 17(5):3119-3125.
[68] Liu X, Shi S, Li Y, et al. Liquid tubule formation and stabilization using cellulose nanocrystal surfactants[J]. Angewandte Chemie, International Edition in English, 2017, 56(41):12594-12598.
[69] Kim Y, Yuk H, Zhao R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558(7709):274-279.
[70] Wang J, Lu T, Yang M, et al. Hydrogel 3D printing with the capacitor edge effect[J]. Science Advances, 2019, 5(3):eaau8769.
[71] Wang J, Yu Y, Guo J, et al. The construction and application of three-dimensional biomaterials[J]. Advanced Biosystems, 2020, doi:10.1002/adbi.201900238.
[72] Hinton T J, Jallerat Q, Palchesko R N, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science Advances, 2015, 1(9):e1500758.
[73] Miesch C, Kosif I, Lee E, et al. Nanoparticle-stabilized double emulsions and compressed droplets[J]. Angewandte Chemie, International Edition in English, 2012, 51(1):145-149.
[74] Tian J, Yuan L, Zhang M, et al. Interface-directed selfassembly of gold nanoparticles and fabrication of hybrid hollow capsules by interfacial cross-linking polymerization[J]. Langmuir, 2012, 28(25):9365-9371.
[75] Chen T, Colver P J, Bon S a F. Organic-inorganic hybrid hollow spheres prepared from tio2-stabilized pickering emulsion polymerization[J]. Advanced Materials, 2007, 19(17):2286-2289.
[76] Imhof A, Pine D J. Ordered macroporous materials by emulsion templating[J]. Nature, 1997, 389(6654):948-951.
[77] Toor A, Lamb S, Helms B A, et al. Reconfigurable microfluidic droplets stabilized by nanoparticle surfactants[J]. ACS Nano, 2018, 12(3):2365-2372.
[78] Huang C, Chai Y, Jiang Y, et al. The interfacial assembly of polyoxometalate nanoparticle surfactants[J]. Nano Letters, 2018, 18(4):2525-2529.
[79] Jiang Y, Lobling T I, Huang C, et al. Interfacial assembly and jamming behavior of polymeric janus particles at liquid interfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(38):33327-33332.
[80] Zhang Z, Jiang Y, Huang C, et al. Guiding kinetic trajectories between jammed and unjammed states in 2D colloidal nanocrystal-polymer assemblies with zwitterionic ligands[J]. Science Advances, 2018, 4(8):eaap8045.
[81] Liu X, Kent N, Ceballos A, et al. Reconfigurable ferromagnetic liquid droplets[J]. Science, 2019, 365(6450):264-267.
[82] Dreyfus R. An attractive, reshapable material[J]. Science, 2019, 365(6450):219.
[83] Trivedi D, Rahn C D, Kier W M, et al. Soft robotics:Biological inspiration, state of the art, and future research[J]. Applied Bionics and Biomechanics, 2008, 5(3):99-117.
[84] Song P, Mao X, Ren Y, et al. Buckling effect of sole zeolitic imidazolate framework-8 nanoparticles adsorbed at the water/oil interface[J]. Langmuir, 2020, 36(9):2322-2329.
[85] Zhang W, Tian Y, He H, et al. Recent advances in synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications[J]. National Science Review, 2020.
[86] 党阿磊, 方成林, 赵曌, 等. 新型二维纳米材料MXene的最新研究进展及应用[J]. 材料工程, 2017, 31(5):1-20.
[87] Huang X, Wang L, Lin Y, et al. Autonomic behavior in lipase-active oil droplets[J]. Angewandte Chemie, International Edition in English, 2018, doi:10.1002/anie.201812111.
[88] Kumar B, Patil A J, Mann S. Enzyme-powered motility in buoyant organoclay/DNA protocells[J]. Nature Chemistry, 2018, 10(11):1154-1163.
[89] Hann S D, Lee D, Stebe K J. Tuning interfacial complexation in aqueous two phase systems with polyelectrolytes and nanoparticles for compound all water emulsion bodies (AWE-somes)[J]. Physical Chemistry Chemical Physics, 2017, 19(35):23825-23831.
[90] Hann S D, Stebe K J, Lee D. AWE-somes:All water emulsion bodies with permeable shells and selective compartments[J]. ACS Applied Materials & Interfaces, 2017, 9(29):25023-25028.
[91] Luo G, Yu Y, Yuan Y, et al. Freeform, reconfigurable embedded printing of all-aqueous 3d architectures[J]. Advanced Materials, 2019, 31(49):e1904631.
[92] Oliva R, Banerjee S, Cinar H, et al. Modulation of enzymatic activity by aqueous two-phase systems and pressure-rivalry between kinetic constants[J]. Chemical Communications, 2019, doi:10.1039/C9CC08065A.
[93] Xie G, Forth J, Chai Y, et al. Compartmentalized, allaqueous flow-through-coordinated reaction systems[J]. Chem, 2019, 5(10):2678-2690.