专题:南海深海探索

南海玄武岩:扩张洋脊与海山

  • 黄小龙 ,
  • 徐义刚 ,
  • 杨帆
展开
  • 中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广州 510640
黄小龙,研究员,研究方向为岩石圈组成、结构和演化及其动力学机制,电子信箱:xlhuang@gig.ac.cn

收稿日期: 2020-04-15

  修回日期: 2020-06-23

  网络出版日期: 2020-11-04

基金资助

国家自然科学基金项目(41625007,41890812);国家海洋局国际合作专项(GASI-GEOGE-02)

Basalts in the South China Sea: Mid-ocean ridges and seamounts

  • HUANG Xiaolong ,
  • XU Yigang ,
  • YANG Fan
Expand
  • State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

Received date: 2020-04-15

  Revised date: 2020-06-23

  Online published: 2020-11-04

摘要

南海存在两种火山岩:洋中脊玄武岩(MORB)和洋岛玄武岩(OIB)。国际大洋发现计划(IODP)第349、367、368、368X航次在南海海盆的成功钻取,获得了南海初始扩张(~34 Ma)和停止扩张(~15-16 Ma)前的洋壳样品。南海东部、西南次海盆及北缘洋-陆过渡带代表海盆发展的不同阶段,具有不同的地幔潜能温度、物质组成和洋脊扩张速度,因此产生的洋中脊玄武岩成分差异显著。南海地区在扩张晚期及停止扩张之后存在大规模地幔上涌,与其周缘地区的持续俯冲有关,产出的海山OIB不同于地幔柱活动产生的火山链。南海虽小,但蕴含的信息异常丰富,是窥探地球深部难得的天然窗口。

本文引用格式

黄小龙 , 徐义刚 , 杨帆 . 南海玄武岩:扩张洋脊与海山[J]. 科技导报, 2020 , 38(18) : 46 -51 . DOI: 10.3981/j.issn.1000-7857.2020.18.007

Abstract

There are two types of volcanic rocks in the South China Sea (SCS):the mid-ocean ridge basalts (MORB) and the ocean island basalts (OIB). The International Ocean Discovery Program (IODP) Expeditions 349, 367, 368 and 368x have successfully drilled out the basement of the SCS basin, for the first time, with samples of the oceanic crust during the initial opening (~34 Ma) and the final spreading (~15-16 Ma) of the SCS. The East Subbasin, the Southwest Subbasin and the continent-ocean transition (COT) zone in the northern margin of the SCS represent different evolution stages of the basin. Due to the differences of the mantle evolution, the mantle potential temperature and the recycled materials in the mantle sources, the MORBs generated at the mid-ocean ridges with different spreading rates show distinct compositions. The large-scale mantle upwelling beneath the SCS during the post-spreading, probably induced by the continuous subduction in the surrounding area, has produced the seamounts at the fossil ridges in the SCS, unlike the volcano chain generated by the mantle plumes. Although the SCS is a small marginal sea, it has recorded incrediblly abundant information and thus provides a rare window for probing the deep earth.

参考文献

[1] Koppers A A P. On the 40Ar/39Ar dating of low-Patassium ocean crust basalt from IODP Expedition 349, South China Sea[C]//AGU Fall Meeting Abstract, 2014.
[2] Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(12):4958-4983.
[3] Ding W, Sun Z, Dadd K, et al. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes[J]. Earth and Planetary Science Letters, 2018, 488:115-125.
[4] Liu H Q, Yumul Jr G P, Dimalanta C B, et al. Western Northern Luzon isotopic evidence of transition from Proto-South China Sea to South China Sea fossil ridge subduction[J]. Tectonics, 2020, 39(2):e2019TC005639.
[5] Wu J, Suppe J, Lu R, et al. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods[J]. Journal of Geophysical Research:Solid Earth, 2016, 121(6):4670-4741.
[6] Zhang G L, Luo Q, Zhao J, et al. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea[J]. Earth and Planetary Science Letters, 2018, 489:145-155.
[7] Wang X C, Li Z X, Li X H, et al. Coexistence of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume:Implications for potential linkage between plume and plate tectonics[J]. Earth and Planetary Science Letters, 2013, 377-378:248-259.
[8] Yang F, Huang X L, Xu Y G, et al. Plume-ridge interaction in the South China Sea:Thermometric evidence from Hole U1431E of IODP Expedition 349[J]. Lithos, 2019, 324-325:466-478.
[9] Yang F, Huang X L, Xu Y G, et al. Magmatic processes associated with oceanic crustal accretion at slow-spreading ridges:Evidence from plagioclases in mid-ocean ridge basalts at the South China Sea[J]. Journal of Petrology, 2019, 60:1135-1162.
[10] Yan Q, Shi X, Metcalfe I, et al. Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia[J]. Scientific Reports, 2018, 8(1):2640.
[11] Fan C, Xia S, Zhao F, et al. New insights into the magmatism in the northern margin of the South China Sea:Spatial features and volume of intraplate seamounts[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6):2216-2239.
[12] Sun Z, Lin J, Qiu N, et al. The role of magmatism in thinning and breakup of the South China Sea continental margin[J]. National Science Review, 2019, 6(5):871-876.
[13] Wang X C, Li Z X, Li X H, et al. Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia:A consequence of a young thermal mantle plume close to subduction zones?[J] Journal of Petrology, 2012, 53:177-233.
[14] Xu YG, Wei J X, Qiu H N, et al. Opening and evolution of the South China Sea constrained by studies on volcanic rocks:Preliminary results and a research design[J]. Chinese Science Bulletin, 2012, 57:3150-3164.
[15] Lin J, Xu Y, Sun Z, et al. Mantle upwelling beneath the South China Sea and links to surrounding subduction systems[J]. National Science Review, 2019, 6(5):877-881.
文章导航

/