[1] 中国科学院南沙综合科学考察队. 南沙群岛永暑礁第四纪珊瑚礁地质[M]. 北京:海洋出版社, 1992.
[2] 朱袁智, 沙庆安, 郭丽芬. 南沙群岛永暑礁新生代珊瑚礁地质[M]. 北京:科学出版社, 1997.
[3] 汪稔, 宋朝景, 赵焕庭. 南沙群岛珊瑚礁工程地质[M]. 北京:科学出版社, 1997.
[4] 甘玉青, 肖传桃, 张斌. 国内外生物礁油气勘探现状与我国南海生物礁油气勘探前景[J]. 海相油气地质, 2009, 14(1):16-20.
[5] 余克服, 张光学, 汪稔. 南海珊瑚礁:从全球变化到油气勘探第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11):1287-1293.
[6] 李国选, 严双伍."21世纪海上丝绸之路" 倡议推进下的中国南海岛礁建设[J]. 当代世界与社会主义, 2018, 2(2):156-162.
[7] 孙宗勋, 赵焕庭. 珊瑚礁工程地质学——新学科的提出[J]. 水文地质工程地质, 1998, 1(1):4-7.
[8] 赵焕庭, 宋朝景, 卢博, 等. 珊瑚礁工程地质初论——新的研究领域珊瑚礁工程地质[J]. 工程地质学报, 1996, 4(1):86-90.
[9] Carter J P, Airey D W, Fahey M. A review of laboratory testing of clacareous soils[C]//Proceedings of the second international conference on engineering for calcareous sedements. Rotterdam:Balkema Publishers, 1999:401-432.
[10] Bonney T G. The Structure and Distribution of Coral Reefs[J]. Nature, 1889, 40:222.
[11] Beger M, Sommer B, Harrison P L, et al. Conserving potential coral reef refuges at high latitudes[J]. Diversity and Distributions, 2014, 20(3):245-257.
[12] 孙金龙, 徐辉龙. 中国的海滩岩研究与进展[J]. 热带海洋学报, 2009, 28(2):103-108.
[13] 张乔民, 余克服, 施祺, 等. 中国珊瑚礁分布和资源特点[C]//2006中国科协年会论文集. 北京:中国科学技术协会, 2006:4320-4324.
[14] 罗祖虞. 碳酸盐岩的生物化学成因及岩石分类[J]. 石油实验地质, 1981, 3(1):13-22.
[15] 张园园, 王建坡, 马俊业, 等. 礁滩分类以及在岩芯中的识别[J]. 古生物学报, 2009, 48(1):89-101.
[16] Fookes P G, Higginbottom I E. The classification and description of near-shore carbonate sediments for engineering purposes[J]. Géotechnique, 1975, 25(2):406-411.
[17] Clark A R, Walker B F. A proposed scheme for the classification and nomemclature for use in the engineering description on Middle Eastern sedimentary rocks[J]. Géotechnique, 1977, 27(1):93-99.
[18] 朱长歧, 汪稔. 生物碳酸盐类沉积物的工程分类[J]. 土工基础, 1998, 12(4):37-42.
[19] 张更生, 徐继涛. 影响疏浚珊瑚礁岩抗剪强度的关键因素[J]. 水运工程, 2017, 8:57-61.
[20] Anselmetti F S, Luthi S, Eberli G P. Quantitative characterisation of carbonate pore systems by digital image analysis[J]. AAPG Bulletin, 1988, 82(10):1815-1836.
[21] Lindqvist J E, Åkesson U, Malaga K. Microstructure and functional properties of rock materials[J]. Materials Characterization, 2007, 58(11):1183-1188.
[22] 孙广忠. 论"岩体结构控制论"[J]. 工程地质学报, 1993, 1(1):14-18.
[23] 赵斌, 王芝银, 伍锦鹏. 矿物成分和细观结构与岩石材料力学性质的关系[J]. 煤田地质与勘探, 2013, 41(3):59-63.
[24] 严与平, 柯有青. 浅谈珊瑚礁工程地质特性及地基处理[J]. 资源环境与工程, 2008, 22(Suppl 2):47-49.
[25] Gischler E, Dietrich S, Harris D, et al. A comparative study of modern carbonate mud in reefs and carbonate platforms:Mostly biogenic, some precipitated[J]. Sedimentary Geology, 2013, 292:36-55.
[26] 唐国艺, 郑建国. 东南亚礁灰岩的工程特性[J]. 工程勘察, 2015, 43(6):6-10.
[27] 吕晨炜. 水泥-乳化沥青固化礁砂路用性能研究[D]. 南京:东南大学, 2016.
[28] 朱长歧, 周斌, 刘海峰. 天然胶结钙质土强度及微观结构研究[J]. 岩土力学, 2014, 35(6):1655-1663.
[29] 詹文欢, 孙宗勋, 张乔民, 等. 南沙群岛海区珊瑚礁灾害性地质分析[J]. 热带海洋学报, 2002, 21(2):58-65.
[30] 商志垒, 孙志鹏, 解习农, 等. 南海西科1井上新世以来礁滩体系内部构成及其沉积模式[J]. 地球科学(中国地质大学学报), 2015, 40(4):697-710.
[31] 李莎, 毛茂, 徐升. 马尔代夫礁灰岩物理力学特性研究[J]. 武汉勘察设计, 2017(6):54-57.
[32] Shen J W, Wang Y, Zhao N, et al. Carbonate sedimentary characteristics of the beach rocks around Qilian Islets and Cays, Xisha Islands:Implication for coral reef development and decline[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474:264-278.
[33] Zhu C Q, Liu H F, Zhou B. Micro-structures and the basic engineering properties of beach calcarenites in South China Sea[J]. Ocean Engineering, 2016, 114:224-235.
[34] 刘海峰, 朱长歧, 孟庆山, 等. 礁灰岩嵌岩桩的模型试验[J]. 岩土力学, 2018, 39(5):1581-1588.
[35] 王国忠. 南海珊瑚礁区沉积学[M]. 北京:海洋出版社, 2001.
[36] Zhu C Q, Qin Y, Meng Q S, et al. Formation and sedimentary evolution characteristics of Yongshu Atoll in the South China Sea Islands[J]. Ocean Engineering, 2014, 84:61-66.
[37] 孟庆山, 范超, 曾卫星, 等. 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1):183-190.
[38] 孙宗勋, 卢博. 南沙群岛珊瑚礁灰岩弹性波性质的研究[J]. 工程地质学报, 1999, 7(2):79-84.
[39] 王新志, 汪稔, 孟庆山. 南沙群岛珊瑚礁礁灰岩力学特性研究[J]. 岩石力学与工程学报, 2008, 27(11):2221-2226.
[40] 白晓宇, 张明义, 李明怀, 等. 珊瑚礁地基的工程性状研究[J]. 工程勘察, 2010, 38(11):21-25, 31.
[41] 刘志伟, 李灿, 胡昕. 珊瑚礁礁灰岩工程特性测试研究[J]. 工程勘察, 2012, 40(9):17-21.
[42] 刘志伟, 杨生彬, 程东幸, 等. 沙特拉比格2×660 MW燃油电站珊瑚礁地基工程勘察与实践[J]. 土工基础, 2017, 31(5):588-590, 598.
[43] 杨永康, 丁学武, 冯春燕, 等. 西沙群岛珊瑚礁灰岩物理力学特性试验研究[J]. 广州大学学报(自然科学版), 2016, 15(5):78-83.
[44] 任世锋, 席文熙, 曹中兴. 珊瑚礁物理力学性质分析及工程应用[J]. 长春工程学院学报(自然科学版), 2016, 17(2):81-85.
[45] 卢超健, 罗辉. 马累-机场岛跨海大桥建设场地工程地质特性及评价[J]. 工程建设与设计, 2016, 5:71-74.
[46] 李志勇, 王维理. 珊瑚礁地区工程地质特征[C]//2016年全国工程勘察学术大会论文集. 北京:中国建筑学会工程勘察分会, 2016:260-264.
[47] 刘海峰. 礁灰岩的工程地质特性及其嵌岩桩的竖向承载力试验研究[D]. 北京:中国科学院大学, 2018.
[48] 肖向阳, 张荣, 彭登峰. 马尔代夫珊瑚礁岩土工程特性研究[J]. 铁道勘察, 2018, 44(2):69-73.
[49] 万志辉, 戴国亮, 龚维明. 珊瑚礁灰岩层后压浆桩增强效应作用机制[J]. 岩土力学, 2018, 39(2):467-473, 482.
[50] 赵小波, 胡建华. 珊瑚礁地层工程勘察实例及探讨[J]. 工程建设与设计, 2016, 2:64-67, 71.
[51] 王新志. 南沙群岛珊瑚礁工程地质特性及大型工程建设可行性研究[D]. 北京:中国科学院大学, 2008.
[52] Carter J P, Johnston I W, Fahey M, et al. Triaxial testing of North Rankin calcarenite[C]//Proceeding of the international conference on calcareous sediments, Perth, Australia. Rotterdam:Balkema Publishers, 1988:515-530.
[53] Lagioia R, Nova R. An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression[J]. Géotechnique, 1995, 45(4):633-648.
[54] King R, Lodge M. North West Shelf development——The foundation engineering challenge[C]//Proceeding of the International Conference on Calcareous Sediments, Perth, Australia. Rotterdam:Balkema Publishers, 1988:555-564.
[55] 朱长歧. 西沙永兴岛码头渗透变形的工程地质分析[C]//中国土木工程学会土力学及基础工程学会地基处理学术委员会第四届地基处理学术讨论会论文集. 杭州:浙江大学出版社, 1995:677-679.
[56] 袁求武, 关泽潮, 文晓雅. 珊瑚料基层施工技术在某港口工程中的应用[J]. 施工技术, 2012, 41(7):21-23+37.
[57] 贺迎喜, 董志良, 王伟智, 等. 沙特RSGT码头项目吹填珊瑚礁地基加固处理[J]. 水运工程, 2010, 10:100-104.
[58] 单华刚, 汪稔. 钙质砂中的桩基工程研究进展述评[J]. 岩土力学, 2000, 21(3):299-304.
[59] 余强, 姜振春. 西沙琛航岛礁工程地质特征[J]. 土工基础, 2013, 27(10):115-117.
[60] Lee C Y, Poulos H G. Tests on model instrumented grouted piles in offshore calcareous soil[J]. Journal of Geotechnical Engineering, 1991, 117(11):1738-1753.
[61] Zhang C, Nguyen G D, Einav I. The end-bearing capacity of piles penetrating into crushable soils[J]. Géotechnique, 2013, 63(5):341-354.
[62] 刘崇权, 单华刚, 汪稔, 等. 钙质土工程特性及其桩基工程[J]. 岩石力学与工程学报, 1999, 18(3):331-331.
[63] 秦月, 孟庆山, 汪稔, 等. 钙质砂地基单桩承载特性模型试验研究[J]. 岩土力学, 2015, 36(6):1714-1720.
[64] 郭超. 南海岛礁珊瑚集料混凝土工程性能研究[D]. 南京:东南大学, 2017.
[65] 王磊, 刘存鹏, 熊祖菁. 剑麻纤维增强珊瑚混凝土力学性能试验研究[J]. 河南理工大学学报(自然科学版), 2014, 33(6):826-830.
[66] Yang S, Yang C, Huang M, et al. Study on bond performance between FRP bars and seawater coral aggregate concrete[J]. Construction and Building Materials, 2018, 173:272-288.
[67] Liu J, Ou Z, Peng W, et al. Literature review of coral concrete[J]. Arabian Journal for Science and Engineering, 2018, 43(4):1529-1541.
[68] Chen C, Ji T, Zhuang Y, et al. Workability, mechanical properties and affinity of artificial reef concrete[J]. Construction and Building Materials, 2015, 98:227-236.
[69] 林伟才. 海水拌制珊瑚礁砂混凝土的特性及工程应用研究[D]. 广州:华南理工大学, 2017.
[70] 朱立军, 李景阳. 岩溶环境中岩-土界面方解石的表面化学特征及其反应机理[J]. 中国岩溶, 1997, 1:20-24.
[71] Feely R A, Sabine C L, Lee K, et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science, 2004, 305(5682):362-366.
[72] Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425:365.
[73] Langdon C, Broecker W S, Hammond D E, et al. Effect of elevated CO 2 on the community metabolism of an experimental coral reef[J]. Global Biogeochemical Cycles, 2003, 17(1):11-1.
[74] Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059):681-686.
[75] 孙杰, 詹文欢, 姚衍桃, 等. 广东省海岸侵蚀现状及影响因素分析[J]. 海洋学报, 2015, 37(7):142-152.
[76] Drupp P S, De Carlo E H, Mackenzie F T. Porewater CO 2-carbonic acid system chemistry in permeable carbonate reef sands[J]. Marine Chemistry, 2016, 185:48-46.
[77] Gouze P, Luquot L. X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution[J]. Journal of Contaminant Hydrology, 2011, 120:45-55.
[78] Madland M V, Finsnes A, Alkafadgi A, et al. The influence of CO 2 gas and carbonate water on the mechanical stability of chalk[J]. Journal of Petroleum Science and Engineering, 2006, 51(4):149-168.
[79] Guen Y L, Renard F, Hellmann R, et al. Enhanced deformation of limestone and sandstone in the presence of high fluids[J]. Journal of Geophysical Research:Solid Earth, 2008, 112(B5):B05421.
[80] Grgic D. Influence of CO2 on the long-term chemomechanical behavior of oolitic limestone[J]. Journal of Geophysical Research:Solid Earth, 2011, 116(B7):B07201.
[81] Clark A C, Vanorio T. The rock physics and geochemistry of carbonates exposed to reactive brines[J]. Journal of Geophysical Research:Solid Earth, 121(3):1497-1513.
[82] Albright R, Takeshita Y, Koweek D A, et al. Carbon dioxide addition to coral reef waters suppresses net community calcification[J]. Nature, 2018, 555:516.
[83] Pandolfi J M, Connolly S R, Marshall D J, et al. Projecting coral reef futures under global warming and ocean acidification[J]. Science, 2011, 333(6041):418-422.