在全球气候变化背景下,灾害性天气越来越危及世界各国尤其是发展中国家的可持续发展,准确和可靠的气象预报和预警信息至关重要。介绍了世界气象组织灾害性天气预报示范计划从最初的概念到各区域子计划的发展现状,分别从全球确定性数值模式、区域数值模式、集合预报系统和气象卫星资料应用回顾了灾害性天气预报技术的进展,以及国内外主要气象中心各数值模式和业务系统的基本特征,并分析了目前灾害性天气预报示范计划发展面临的挑战。结合全球气象发展战略和技术趋势,展望了该计划及数值模式技术应用的未来发展。
In the context of the global climate change, severe weather is increasingly threatening the sustainable development of all countries, especially, developing countries. Thus an accurate and reliable weather forecast and the warning information are essential. This paper analyzes the Severe Weather Forecasting Demonstration Project (SWFDP) of the World Meteorological Organization (WMO), including its initial concept and the status of regional subprojects. Currently, 8 regional subprojects were set up, covering about 80 countries. The recent technical progresses of the severe weather forecasting are reviewed, including the global deterministic numerical models, the regional numerical models, the ensemble prediction systems and the meteorological satellite data applications. The SWFDP involves a cascading forecasting process to provide an effective access to the products and the tools made available by the advanced operational global and regional centres. The basic characteristics of the numerical models and the operational systems in the major domestic and international meteorological centers are analyzed. Furthermore, current challenges for the development of the severe weather forecasting demonstration project are analyzed and the prospects of the project as well as the numerical model applications are discussed.
[1] World Meteorological Organization. Establish guidelines for implementation of a demonstration project of severe weather forecasting[R]. Toulouse:WMO, 2004.
[2] 刘甜, 方建, 马恒, 等. 全球陆地气候气象及水文灾害死亡人口时空格局及影响因素分析(1965-2016年)[J]. 自然灾害学报, 2019, 28(3):8-16.
[3] World Meteorological Organization. Manual on the global data-processing and forecasting system (WMO-No. 485)[R]. Geneva:WMO, 2017.
[4] Thiaw W M, Kumar V B. NOAA's African desk:Twenty years of developing capacity in weather and climate forecasting in Africa[J]. Bulletin of the American Meteorological Society, 2015, 96:737-753.
[5] 曾庆存, 林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1):1-6.
[6] Florian R, Mohammad A, Steve A, et al. Earth system science frontiers:An early career perspective[J]. Bulletin of the American Meteorological Society, 2017, 98(6):1120-1127.
[7] World Meteorological Organization. WMO guidelines on multi-hazard impact-based forecast and warning services (WMO-No.1150)[R]. Geneva:WMO, 2015.
[8] 沈学顺, 苏勇, 胡江林, 等. GRAPES_GFS全球中期预报系统的研发和业务化[J]. 应用气象学报, 2017, 28(1):1-10.
[9] 漆梁波. 高分辨率数值模式在强对流天气预警中的业务应用进展[J]. 气象, 2015, 41(6):661-673.
[10] 高丽, 陈静, 郑嘉雯, 等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7):706-716.
[11] 王毅, 周庆亮, 代刊, 等. 全球数据处理和预报系统发展及展望[J]. 气象科技进展, 2019, 9(2):6-10.
[12] Bauer P, Thorpe A, Brunet G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 52:47-55.
[13] 杜钧, 钱维宏. 天气预报的三次跃进[J]. 气象科技进展, 2014, 4(6):13-26.
[14] Benjamin, S G, Brown J M, Brunet G, et al. 100 years of progress in forecasting and NWP applications[J]. Meteorological Monographs, 2018, 59:13.1-13.67.
[15] 龚建东. 同化技术:数值天气预报突破的关键[J]. 气象科技进展, 2013, 3(3):5-13.
[16] Zhang F, Sun Y Q, Magnusson L, et al. What is the predictability limit of midlatitude weather[J]. Journal of the Atmospheric Sciences, 2019, 76:1077-1091.
[17] 张小玲, 杨波, 盛杰, 等. 中国强对流天气预报业务发展[J]. 气象科技进展, 2018, 8(3):8-18.
[18] Wang Y, Belluš M, Ehrlich A, et al. 27 years of regional cooperation for limited area modelling in central Europe[J]. Bulletin of the American Meteorological Society. 2018, 99:1415-1432.
[19] 黄丽萍, 陈德辉, 邓莲堂, 等. GRAPES_Meso V4.0主要技术改进和预报效果检验[J]. 应用气象学报, 2017, 28(1):25-37.
[20] Woodhams B J, Birch C E, Marsham J H, et al. What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa[J]. Monthly Weather Review, 2018, 146:2757-2780.
[21] 杜钧, 陈静. 单一值预报向概率预报转变的基础:谈谈集合预报及其带来的变革[J]. 气象, 2010, 36(11):1-11.
[22] 王璐, 沈学顺. 对流尺度集合预报与模式不确定性研究进展[J]. 气象, 2019, 45(8):1158-1168.
[23] 张涵斌, 范水勇, 陈敏, 等. 区域集合预报基于SKEB和多物理过程的混合模式扰动方法研究[J]. 气象, 2019, 45(1):17-28.
[24] Lalaurette F. Early detection of abnormal weather conditions using a probabilistic extreme forecast index[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129:3037-3057.
[25] Morel C, Sénési S, Autones F. Building upon SAF-NWC products:Use of the rapid developing thunderstorms (RDT) product in meteo-France nowcasting tools[C]. Meteorological Satellite Data Users Conference. Dublin:Eumetsat and Met Eirean, 2002, 248-255.
[26] 陈德辉, 沈学顺. 新一代数值预报系统GRAPES研究进展[J]. 应用气象学报, 2016, 17(6):773-777.
[27] 杨军, 咸迪, 唐世浩. 风云系列气象卫星最新进展及应用[J]. 卫星应用, 2018, 11:8-14.
[28] 覃丹宇, 方宗义. 利用静止气象卫星监测初生对流的研究进展[J]. 气象, 2004, 40(1):7-17.
[29] Brunet G, Jones S, Ruti P M. Seamless prediction of the earth system:from minutes to months[R]. Geneva:WMO, 2015.
[30] Jubach R, Tokar A S. International severe weather and flash flood hazard early warning systems-Leveraging coordination, cooperation and partnerships through a hydrometeorological project in Southern Africa[J]. Water, 2016, 8:258.