2020年1月30日,美国主动关闭斯皮策空间望远镜。斯皮策空间望远镜已5次延寿、在轨运行超过16年,运用科学数据发表了超过9000篇科学论文,在宇宙红外观测、恒星和星系演化、系外行星证认等多个领域取得了重大发现。斯皮策空间望远镜在研制阶段采用了新颖的地球尾随日心轨道设计,当时最先进的大面阵红外探测器件;发射后科学目标紧扣空间天文观测新热点的系外行星及时调整,在3个焦面有效载荷仅剩1个红外阵列相机,且其4个波段仅存2个能正常工作的挑战下,任务运控团队和科学团队紧密协同,仍成功开展了长达10年的科学观测。空间科学先导专项部署了相关空间红外天文探测的预先研究,斯皮策任务的开放技术创新、科学目标与时俱进、协同一体化观测等实现科学产出最大化的系列实践值得借鉴。
NASA's Spitzer Space Telescope finally ceased all science operations after more than 16 years'operation, with 5 times of mission extensions. Significant discoveries were made in many fields, such as studying the universe in the infrared light, revealing new wonders in our solar system, our galaxy, and beyond, as well as detecting exoplanets and characterizing their atmospheres. More than 9000 scientific papers were published based on its scientific data. A novel Earth-trailing heliocentric orbit was chosen, with the then state-of-the-art, large-format infrared detector arrays in the design of the Spitzer. The mission adjusted its scientific objectives as soon as the exoplanets became a new hot spot of the space astronomy observation after its launch. Scientific observations were made for another 10 years after its cryogenic main mission with the only one payload left among the three focal plane scientific instruments aboard, i.e. the two shortest wavelength bands, at 3.6 and 4.5 microns of the 4 channel infrared array camera. For a sustainable progress of China's space science missions, it is beneficial to learn from the Spitzer mission's practices such as the open technology innovation, the adjustment of the scientific goal with the times, and the collaborative integrated observation with other ground or space astronomical telescopes.
[1] Wu J, Bonnet R. Maximize the impacts of space science[J]. Nature, 2007(551):435-436.
[2] Werner M W, Roellig T L, Low F J, et al. The SPITZER space telescope mission[J]. The Astrophysical Supplement Series, 2004, 154:1-9.
[3] Spitzer mission overview[EB/OL].[2020-02-15]. https://www.jpl.nasa.gov/news/press_kits/spitzer/.
[4] Spitzer science[EB/OL].[2020-02-15]. https://www.jpl.nasa.gov/news/press_kits/spitzer/science/.
[5] National Research Council. Strategy for space astronomy and astrophysics for the 1980's[M]. Washington D C:The National Academies Press, 1979.
[6] Davies J K, Green S F, Stewart B C, et al. The IRAS fastmoving object search[J]. Nature, 1984(309):315-319.
[7] Fazio G G. Small helium-cooled infrared telescope experiment for Spacelab-2[R]. MA Cambridge:The Smithsonian Astrophysical Observatory, 1990.
[8] Kwok J H, Garcia M D, Bonfiglio E, et al. Spitzer Space Telescope mission design[C]//Proceedings of SPIE. United Kingdom:Glasgow, SPIE, 2004(5487):201-210.
[9] Werner M W. The Spitzer Space Telescope[J]. Optical Engineering, 2012, 51(1):011008.
[10] Gehrz R D, Roellig T L, Werner M W, et al. The NASA Spitzer Space Telescope[J]. Review of Scientific Instrument, 2008, 78:011302.
[11] Fazio G G, Hora J L, Allen L E, et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope[J]. The Astrophysical Journal Supplement Series, 2004(154):10-17.
[12] Bryden G, Beichman C A, Rieke G H, et al. Spitzer/MIPS limits on asteroidal dust in the pulsar planetary system PSR B1257+12b[J]. The Astrophysical Journal, 2006(646):1038-1042.
[13] Mayor M, Queloz D. A Jupiter-mass companion to a solar-type star[J]. Nature, 1995(378):355-359.
[14] Hatzes A P. The role of space telescopes in the characterization of transiting exoplanets[J]. Nature, 2014(513):353-357.
[15] Lissauer J J, Dawson R I, Tremaine S. Advances in exoplanet science from Kepler[J]. Nature, 2014(513):336-344.
[16] Swain M R, Deroo P, Griffith C A, et al. A groundbased near-infrared emission spectrum of the exoplanet HD 189733b[J]. Nature, 2010(463):637-639.
[17] Yee J C, Fazio G G, Benjamin R, et al. The science case for an extended Spitzer mission[R]. MA Cambridge:the Smithsonian Astrophysical Observatory, 2017.
[18] Lowrance P J, Ingalls J G, Krick J E, et al. Spitzer Space Telescope:Innovations and optimizations in the extended mission Era[C]//15th International Conference on Space Operations, France, Marseille:The American Institute of Aeronautics and Astronautics, Inc., 2018:516-528.
[19] Verbiscer A J, Skrutskie M F, Hamilton D P. Saturn's largest ring[J]. Nature, 2009(461):1098-1100.
[20] Gillon M, Triaud A, Demory B, et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1[J]. Nature, 2017(542):456-460.
[21] Lisse C M, VanCleve J, Adams A C, et al. Spitzer spectral observations of the deep impact ejecta[J]. Science, 2006, 313(5787):635-640.
[22] Map of Exoplanets Found in Our Galaxy[EB/OL]. (2015-04-14)[2020-02-16]. http://www.spitzer.caltech.edu/images/6053-sig15-006.
[23] May C. Back to the beginning[J]. Nature Physics, 2017, 12:287.
[24] Spitzer Bibliographical Database[EB/OL].[2020-02-15]. http://sohelp2.ipac.caltech.edu/bibsearch/.
[25] Spitzer steps aside[J]. Nature Astronomy, 2020(4):293.
[26] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343):1140-1144.
[27] Dampe C, An Q, Asfandiyarov R, et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite[J]. Science Advances, 2019, 5(9):3793.
[28] Wu W W, Li Ch Li, Zuo W, et al. Lunar farside to be explored by Chang'e-4[J]. Nature Geoscience, 2019, 12:222-223.
[29] 吴季. 空间科学任务的全价值链管理和产出评估[J]. 中国科学院院刊, 2019, 34(2):206-213.
[30] 邓劲松. 红外天文小卫星深化论证[R]. 北京:上海微小卫星工程中心, 2016.
[31] 李佳席, 邓劲松, 许春, 等. 红外空间天文发展[J]. 天文学进展, 2016, 34(3):327-340.