波浪滑翔机是一种小型无人海上作业平台,根据科考观测、海上作业、数据中继等不同任务搭载不同载荷,在高海况的远洋海域执行连续的作业任务。论述了波浪滑翔机的基本原理、结构对比、应用领域。提出可以以波浪滑翔机为中间桥梁,利用其长期远洋存在的特性,结合卫星通信技术,打造天海一体的海洋立体观测数据服务平台,形成自我运营的海上监测装备和数据服务能力的应用构想。
Wave glider is a small unmanned offshore operation platform that carries different loads according to different tasks, such as scientific observation, offshore operation, and data relay, and performs continuous operation tasks in high sea conditions in the ocean waters. Based on a large number of investigations and combined with the research progress of the Third Research Institute of China Aerospace Science and Industry Corporation in the field of wave gliders, this article mainly discusses the basic principles of wave gliders, and compares domestic and foreign situations in terms of structure, main application areas and application cases. It also points out that wave glider can be used as an intermediate bridge using its long-term ocean-going existence characteristics, and that combined with satellite communication technology, wave glider can create an integrated ocean stereo observation data service platform, forming a self-operated maritime equipment for monitoring and data service. They will have high application prospects and social value in such as marine environmental research, marine environmental monitoring and protection, intelligent fishery production, marine safety and rights protection, and enhancement of coastal defense forces.
[1] Alaaeldeen M E A, Duan W Y. Overview on the development of autonomous underwater vehicles (AUVs)[J]. Journal of Ship Mechanics, 2016, 20(6):768-787.
[2] 李小涛, 王理, 吴小涛. 波浪滑翔器原理和总体设计[J]. 四川兵工学报, 2013, 34(12):128-131.
[3] 杨燕, 张森, 史健, 等. 波浪动力滑翔机海洋环境监测系统[J]. 海洋技术学报, 2014, 33(1):109-114.
[4] Timothy W R. Wave-powered unmanned surface vehicle as a station-keeping gateway node for undersea distributed networks[R]. Monterey:Naval Postgraduate School, 2012.
[5] Williams H. AUVSI 2013:Liquid Robotics plots growth path for wave glider[J]. Jane's International Defence Review, 2013(46):22.
[6] Liquid Robotics Inc. Liquid Robotics announces newest wave glider platform for operational efficiency and performance[EB/OL]. (2019-09-10)[2020-08-29]. https://www.liquid-robotics.com/press-releases/liquid-robotics-announces-newest-wave-glider-platform-for-operationalefficiency-and-performance/.
[7] Liquid Robotics Inc. Jane's unmanned maritime vehicles and systemswave glider[R]. Washington, DC:IHS Jane's, 2013.
[8] Williams H. AUVSI 2015:Liquid Robotics outlines SV3 enhancement plans[R]. Atlanta:Jane's International Defence Review, 2015.
[9] 吕元博. 波浪滑翔机设计与性能研究[D]. 上海:上海交通大学, 2018.
[10] 曹守启, 冯江伟. 波浪滑翔机水下牵引机结构设计与分析[J]. 海洋工程, 2020, 38(2):92-100.
[11] 于振江, 常宗瑜, 郑中强, 等. 波浪滑翔机推进装置翼片的启动阶段水动力学分析[J]. 中国海洋大学学报, 2020, 50(4):121-127.
[12] 孙秀军, 王力伟, 桑宏强, 等. 波浪滑翔器水下牵引机滑翔动力分析[J]. 水下无人系统学报, 2020, 28(3):252-258.
[13] 郑炳焕. 基于波浪能的海面滑翔机研究[D]. 杭州:浙江大学, 2015.
[14] Grace J. Navy League 2016:Boeing-Liquid Robotics partnership yielding persistent unmanned maritime ISR capability[R]. Washington, DC:Jane's Navy International, 2016.
[15] Grace J. Boeing-Liquid Robotics partnership to yield new undersea ISR offerings[J/OL]. Jane's International Defence Review, (2015-05-18)[2020-03-10]. http://janesihs.com.
[16] John A, Wiggins H, Wiggins S, et al. West coast naval training range demonstration of glider-based passive acoustic monitoring[R]. San Diego:University of California San Diego, 2013.
[17] Liquid Robotics Inc. AUVSI 2014:Wave glider set to deploy with acoustic sensor system[R]. Orlando:IHS Jane's, 2014.
[18] Joseph N B. Integration of an acoustic modem onto a wave glider unmanned surface vehicle[R]. Monterey:Naval Postgraduate School, 2012.