[1] Bucur V. Acoustics of wood[M]. Second Edition. New York:Springer Science & Business Media, 2006:217-240.
[2] 王礼立. 应力波基础[M]. 2版. 北京:国防工业出版社, 2005:1-4.
[3] 杨洋, 申世杰. 木材无损检测技术研究历史、现状和展望[J]. 科技导报, 2010, 28(14):113-117.
[4] Vary A. The acousto-ultrasonic approach[M]//Duke J C ed. Acousto-Ultrasonics. Boston:Springer, 1988:1-21.
[5] Bucur V. Nondestructive characterization and imaging of wood[M]. New York:Springer Science & Business Media, 2003:181-214.
[6] Paschalis P. Bestimmung der korrelation zwischen ausgewahlten festigkeitseigenschaften und strukturmerkmalen von holz mit anwendung des resonanz und ultraschallverfahrens[J]. Holztechnologie, 1978:14-17.
[7] Bucur V, Archer R R. Elastic constants for wood by an ultrasonic method[J]. Wood Science & Technology, 1984, 18(4):255-265.
[8] Hasegawa M, Sasaki Y. Acoustoelastic birefringence effect in wood I:Effect of applied stresses on the velocities of ultrasonic shear waves propagating transversely to the stress direction[J]. Journal of Wood Science, 2004, 50(1):47-52.
[9] Dzbeński W, Wiktorski T. Ultrasonic evaluation of mechanical properties of wood in standing trees[C]//COST E 53 Conference-Quality Control for Wood and Wood Products, Warsaw 15-17 Oct, 2007:15-17.
[10] Yin Y, Nagao H, Liu X, et al. Mechanical properties assessment of Cunninghamia lanceolata plantation wood with three acoustic-based nondestructive methods[J]. Journal of Wood Science, 2009, 56(1):33-40.
[11] 张训亚. 兴安落叶松木材性质的声-超声技术预测[D]. 北京:中国林业科学研究院, 2011.
[12] Kohlhauser C, Hellmich C. Determination of Poisson's ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses:Application to metals and wood[J]. European Journal of Mechanics-A/Solids, 2012(33):82-98.
[13] Ruy M, Gonçalves R, Pereira D M, et al. Ultrasound grading of round Eucalyptus timber using the Brazilian standard[J]. European Journal of Wood and Wood Products, 2018, 76(3):889-898.
[14] McDonald K, Cox R, Bulgrin E. Locating lumber defects by ultrasonics[M]. Wisconsin:US Forest Products Laboratory, 1969.
[15] Dunlop J I. Testing of poles by using acoustic pulse method[J]. Wood Science & Technology, 1981, 15(4):301-310.
[16] Bucur V. Technique ultrasonore de caractérisation du degré d'altération des bois de hêtre et de pin Soumis à l'Attaque de différents champignons:Holzforschung[J]. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 1991, 45(1):41-46.
[17] Bütler R, Patty L, Le Bayon R C, et al. Log decay of Picea abies in the Swiss Jura Mountains of central Europe[J]. Forest Ecology and Management, 2007, 242(2/3):791-799.
[18] Kazemi-Najafi S, Shalbafan A, Ebrahimi G. Internal decay assessment in standing beech trees using ultrasonic velocity measurement[J]. European Journal of Forest Research, 2009, 128(4):345-350.
[19] 张甜, 程小武, 陆伟东, 等. 超声波法检测木材内部孔洞缺陷的研究[J]. 西南林业大学学报, 2016, 36(1):121-125.
[20] El-Hadad A. Using acoustic emission technique with Matlab® analysis to detect termites in timber-in-service[D]. Melbourne:The University of Melbourne, 2017.
[21] Tomikawa Y, Iwase Y, Arita K, et al. Nondestructive inspection of a wooden pole using ultrasonic computed tomography[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1986, 33(4):354-8.
[22] Nicolotti G, Socco L, Martinis R, et al. Application and comparison of three tomographic techniques for detection of decay in trees[J]. Journal of Arboriculture, 2003, 29(2):66-78.
[23] Brazee N J, Marra R E, Gocke L, et al. Non-destructive assessment of internal decay in three hardwood species of northeastern North America using sonic and electrical impedance tomography[J]. Forestry, 2010, 84(1):33-39.
[24] 刘铁男. 基于超声波活立木内部腐朽衰减成像的研究[D]. 哈尔滨:东北林业大学, 2010.
[25] 王娜. 基于超声波传播场的原木及板材空洞缺陷定量检测[D]. 哈尔滨:东北林业大学, 2012.
[26] de Oliveira F G R, Candian M, Lucchette F F, et al. A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra)[J]. Building and Environment, 2005, 40(2):297-300.
[27] Wang L H, Xu H D, Zhou C L, et al. Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave[J]. Journal of Forestry Research, 2007, 18(3):221-225.
[28] Wang N, Wang L H. Response of ultrasonic wave velocity to wood structure defect of Korean Pine[C]//Advanced Materials Research. Zurich:Trans Tech Publications Ltd, 2011, 311:1609-1613.
[29] Wang N, Wang L H, Xu H D. Effect of emission points on ultrasonic testing accuracy of log internal decay[J]. Advanced Materials Research, 2011(337):682-685.
[30] Wang N, Wang L H, Xu H D. The prediction on the size and location of internal defects of standing trees using ultrasonic technology[C]//Key Engineering Materials.Zurich:Trans Tech Publications Ltd, 2011(467):1838-1845.
[31] Gao S, Wang N, Wang L H, et al. Application of an ultrasonic wave propagation field in the quantitative identification of cavity defect of log disc[J]. Computers and Electronics in Agriculture, 2014(108):123-129.
[32] 高珊. 环境温度对美国红松活立木及原木声波传播及力学特性的影响[D]. 哈尔滨:东北林业大学, 2012.
[33] 高珊, 王立海, 杨冬辉, 等. Sylvatest-Duo装置的探针触式与计示压强对木材超声波测量精度的影响[J]. 浙江农林大学学报, 2016(5):875-880.
[34] Gonçalves R, Lorensani R G M, Negreiros T O, et al. Moisture-related adjustment factor to obtain a reference ultrasonic velocity in structural lumber of plantation hardwood[J]. Wood Material Science & Engineering, 2017, 13(5):254-261.
[35] El-Hadad A, Brodie G I, Ahmed B S. The Effect of wood condition on sound wave propagation[J]. Open Journal of Acoustics, 2018, 8(3):37-51.
[36] 冯海林, 李光辉. 木材无损检测中的应力波传播建模和仿真[J]. 系统仿真学报, 2009(8):258-261.
[37] 余斌, 高珊, 王立海, 等. 超声波在原木内部传播理论研究[J]. 森林工程, 2014, 30(1):92-95.
[38] Liu L, Li G H. Acoustic tomography based on hybrid wave propagation model for tree decay detection[J]. Computers and Electronics in Agriculture, 2018(151):276-285.
[39] Sarnaghi A K, van de Kuilen J W G. Strength prediction of timber boards using 3D FE-analysis[J]. Construction and Building Materials, 2019(202):563-573.
[40] Esteban L G, Fernández F G, Palacios P D. MOE prediction in Abies pinsapo Boiss. timber:Application of an artificial neural network using non-destructive testing[J]. Computers & Structures, 2009, 87(21/22):1360-1365.
[41] Wang L, Li L, Qi W, et al. Pattern recognition and size determination of internal wood defects based on wavelet neural networks[J]. Computers and Electronics in Agriculture, 2009, 69(2):142-148.
[42] Saadat-Nia M, Brancheriau L, Gallet P, et al. Ultrasonic wave parameter changes during propagation through poplar and spruce reaction wood[J]. BioResources, 2011, 6(2):1172-1185.
[43] Brancheriau L, Ghodrati A, Gallet P, et al. Application of ultrasonic tomography to characterize the mechanical state of standing trees(Picea abies)[J]. Journal of Physics:Conference Series, 2012, 353(1):012007.
[44] Moreno L F E, Arciniegas A, Prieto F A, et al. Standing tree decay detection by using acoustic tomography images[C]//Twelfth International Conference on Quality Control by Artificial Vision 2015. Le Creusot:International Society for Optics and Photonics, 2015(9534):4.
[45] Metwally K, Lefevre E, Baron C, et al. Measuring mass density and ultrasonic wave velocity:A wavelet-based method applied in ultrasonic reflection mode[J]. Ultrasonics, 2016(65):10-17.
[46] Miguel E P, Melo R R, Serenini Junior L, et al. Using artificial neural networks in estimating wood resistance[J]. Maderas. Ciencia y tecnología, 2018, 20(4):531-543.
[47] Berndt H. Propagation of elastic waves in wood:Modeling and measurement[D]. California:University of California at Berkeley, 1998.
[48] Berndt H, Johnson G C. Examination of wave propagation in wood from a microstructural perspective[M]//Thompson DO, Chimenti DE, eds. Review of Progress in Quantitative Nondestructive Evaluation. Boston:Springer, 1995:1661-1668.
[49] Berndt H, Schniewind A, Johnson G. High-resolution ultrasonic imaging of wood[J]. Wood Science and Technology, 1999, 33(3):185-198.
[50] Ramalli A, Guidi F, Boni E, et al. A real-time chirpcoded imaging system with tissue attenuation compensation[J]. Ultrasonics, 2015(60):65-75.
[51] Rouyer J, Mensah S, Vasseur C, et al. The benefits of compression methods in acoustic coherence tomography[J]. Ultrasonic Imaging, 2015, 37(3):205-223.
[52] Lim H J, Sohn H, Kim Y. Data-driven fatigue crack quantification and prognosis using nonlinear ultrasonic modulation[J]. Mechanical Systems and Signal Processing, 2018(109):185-195.