[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[2] Linsebigle A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3):735-758.
[3] Thompson T L, Yates J T. Surface science studies of the photoactivation of TiO2-new photochemical processes[J]. Chemical Reviews, 2006, 106(10):4428-4453.
[4] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chemical Society Reviews, 2009, 38(1):253-278.
[5] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium[J]. The Journal of Physical Chemistry B, 2002, 106(19):5029-5034.
[6] Serpone N, Lawless D, Disdier J, et al. Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids:Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations[J]. Langmuir, 1994, 10(3):643-652.
[7] Kato H, Hori M, Konta R, et al. Construction of Zscheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation[J]. Chemistry Letters, 2004, 33(10):1348-1349.
[8] Maeda K, Teramura K, Lu D L, et al. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting[J]. Angewandte Chemie-International Edition, 2006, 45(46):7806-7809.
[9] Maeda K, Teramura K, Lu D L, et al. Roles of Rh/Cr2O3(core/shell) nanoparticles photodeposited on visible-lightresponsive (Ga1-xZnx)(N1-xOx) solid solutions in photocatalytic overall water splitting[J]. Journal of Physical Chemistry C, 2007, 111(20):7554-7560.
[10] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. Journal of the American Chemical Society, 2003, 125(10):3082-3089.
[11] Ham Y, Hisatomi T, Goto Y, et al. Flux-mediated doping of SrTiO3 photocatalysts for efficient overall water splitting[J]. Journal of Materials Chemistry A, 2016, 4(8):3027-3033.
[12] Takata T, Jiang J Z, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581(7809):411-414.
[13] Kudo A, Sayama A, Tanata A, et al. Nickel-loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2:Structure and reaction mechanism[J]. Journal of Catalysis, 1989, 120(2):337-352.
[14] Sakata Y, Hayashi T, Yasunaga R, et al. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution[J]. Chemical Communications, 2015, 51(65):12935-12938.
[15] Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting[J]. Journal of the American Chemical Society, 2005, 127(23):8286-8287.
[16] Maeda K, Teramura K, Domen K. Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light[J]. Journal of Catalysis, 2008, 254(2):198-204.
[17] Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature, 2001, 414(6864):625-627.
[18] Pan C S, Takata T, Nakabayashi M, et al. A complex perovskite-type oxynitride:The first photocatalyst for water splitting operable at up to 600 nm[J]. Angewandte Chemie International Edition, 2015, 54(10):2955-2959.
[19] Lee Y G, Teramura K, Hara M, et al. Modification of (Zn1+xGe) (N2Ox) solid solution as a visible light driven photocatalyst for overall water splitting[J]. Chemistry of Materials, 2007, 19(8):2120-2127.
[20] Maeda K, Lu D L, Domen K. Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d(0) electronic configuration[J]. Chemistry, 2013, 19(16):4986-4991.
[21] Asai R, Nemoto H, Jia Q X, et al. A visible light responsive rhodium and antimony-codoped SrTiO3 powdered photocatalyst loaded with an IrO2 cocatalyst for solar water splitting[J]. Chemical Communications, 2014, 50(19):2543-2546.
[22] Maeda K. Z-Scheme water splitting using two different semiconductor photocatalysts[J]. ACS Catalysis, 2013, 3(7):1486-1503.
[23] Bard A J. Photoelectrochemistry and heterogeneous photocatalysis at semiconductors[J]. Journal of Photochemistry, 1979, 10(1):59-75.
[24] Sayama K, Mukasa K, Abe R, et al. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation[J]. Chemical Communications, 2001(23):2416-2417.
[25] Maeda K, Higashi M, Lu D L, et al. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst[J]. Journal of the American Chemical Society, 2010, 132(16):5858-5868.
[26] Chen S S, Qi Y, Takashi H, et al. Efficient visible-lightdriven Z-scheme overall water splitting using a MgTa2O6-xNy/TaON heterostructure photocatalyst for H2 evolution[J]. Angewandte Chemie International Edition, 2015, 54(29):8498-8501.
[27] Wang W Y, Chen J, Li C, et al. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts[J]. Nature Communications, 2014, 5:4647.
[28] Wang Q, Hisatomi T, Jia Q X, et al. Scalable water splitting on particulate photocatalyst sheets with a solar-tohydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials, 2016, 15(6):611-615.
[29] Kim H G, Borse P H, Jang J S, et al. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis[J]. Chemical Communications, 2009, 41(39):5889-5891.
[30] Marci G, Garcia-Lopez E I, Palmisano L. Photocatalytic CO2 reduction in gas-solid regime in the presence of H2O by using GaP/TiO2 composite as photocatalyst under simulated solar light[J]. Catalysis Communications, 2014, 53:38-41.
[31] Chen S F, Zhao W, Liu W, et al. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-NiO/n-ZnO[J]. Journal of Sol-Gel Science and Technology, 2009, 50(3):387-396.
[32] Kim E S, Nishimura N, Kim J Y, et al. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation[J]. Journal of the American Chemical Society, 2013, 135(14):5375-5383.
[33] Park H, Choi W, Hoffmann M R. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production[J]. Journal of Materials Chemistry, 2008, 18(20):2379-2385.
[34] Song K Y, Park M K, Kwon Y T, et al. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties[J]. Chemistry of Materials, 2001, 13(7):2349-2355.
[35] Su J Z, Guo L J, Bao N Z, et al. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(5):1928-1933.
[36] Zhang J, Xu Q, Feng Z C, et al. Importance of the relationship between surface phases and photocatalytic activity of TiO2[J]. Angewandte Chemie International Edition, 2008, 47(9):1766-1769.
[37] Wang X, Xu Q, Li M R et al. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3[J]. Angewandte Chemie International Edition, 2012, 51(52):13089-13092.
[38] Li R G, Zhang F X, Wang D E, et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4[J]. Nature Communications, 2013, 4:1432.
[39] Mu L C, Zhao Y, Li A L, et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting[J]. Energy & Environmental Science, 2016, 9:2463-2469.
[40] Li R G, Tao X P, Chen R T, et al. Synergetic effect of dual co-catalysts on the activity of p-type Cu2O crystals with anisotropic facets[J]. Chemistry, 2015, 21(41):14337-14341.
[41] Yang J H, Wang D E, Han H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Accounts of Chemical Research, 2013, 46(8):1900-1909.
[42] Yan H J, Yang J H, Ma G J, et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst[J]. Journal of Catalysis, 2009, 266(2):165-168.
[43] Maeda K, Xiong A K, Yoshinaga T, et al. Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light[J]. Angewandte Chemie International Edition, 2010, 122(24):4190-4193.
[44] Lin F, Wang D E, Jiang Z X, et al. Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO 2 under visible light irradiation using molecular oxygen as oxidant[J]. Energy & Environmental Science, 2012, 5(4):6400-6406.
[45] Ma B J, Weng F Y, Jiang H F, et al. The synergistic effects of two co-catalysts on Zn2GeO4 on photocatalytic water splitting[J]. Catalysis Letters, 2010, 134(1/2):78-86.
[46] Ma S S K, Maeda K, Abe R, et al. Visible-light-driven nonsacrificial water oxidation over tungsten trioxide powder modified with two different cocatalysts[J]. Energy & Environmental Science, 2012, 5(8):8390-8397.
[47] Yang S, Yang B X, Wu L, et al. Titania single crystals with a curved surface[J]. Nature Communications, 2014, 5:5355.
[48] Zhang L, Wang W Z, Sun S M, et al. Selective transport of electron and hole among {001} and {110} facets of BiOCl for pure water splitting[J]. Applied Catalysis B:Environmental, 2015, 162:470-474.
[49] Zhen C, Yu J C, Liu G, et al. Selective deposition of redox co-catalyst(s) to improve the photocatalytic activity of single-domain ferroelectric PbTiO3 nanoplates[J]. Chemical Communications, 2014, 50(72):10416-10419.
[50] Zhao Y, Ding C M, Zhu J, et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts[J]. Angewandte Chemie International Edition, 2020, 59(24):9653-9658.
[51] Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343(6174):990-994.
[52] Liu G J, Yan P L, Ye S, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy & Environmental Science, 2016, 9, 1327-1334.
[53] Pihosh Y, Minegishi T, Nandal V, et al. Ta3N5-nanorods enabling highly efficient water oxidation via advantageous light harvesting and charge collection[J]. Energy & Environmental Science, 2020, 13(5):1519-1530.
[54] Bonke S A, Wiechen M, MacFarlane D R, et al. Renewable fuels from concentrated solar power:Towards practical artificial photosynthesis[J]. Energy & Environmental Science, 2015, 8(9):2791-2796.
[55] Jia J Y, Seitz L C, Benck J D, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%[J]. Nature Communications, 2016, 7:13237.