专题:太阳燃料

量子点人工光合成制氢研究进展

  • 王景豪 ,
  • 南小磊 ,
  • 吴昊林 ,
  • 李旭兵 ,
  • 陈彬 ,
  • 佟振合 ,
  • 吴骊珠
展开
  • 中国科学院理化技术研究所光化学转化与功能材料重点实验室, 北京 100190
王景豪,博士研究生,研究方向为人工光合成,电子信箱:wangjinghao@mail.ipc.ac.cn;南小磊(共同第一作者),博士研究生,研究方向为人工光合成,电子信箱:nanxiaolei15@mails.ucas.ac.cn

收稿日期: 2020-09-17

  修回日期: 2020-10-05

  网络出版日期: 2021-01-14

基金资助

国家自然科学基金项目(91027041,21390404,21603248,51373193)

Progress of quantum dot artificial photosynthesis for hydrogen production

  • WANG Jinghao ,
  • NAN Xiaolei ,
  • WU Haolin ,
  • LI Xubing ,
  • CHEN Bin ,
  • TONG Zhenhe ,
  • WU Lizhu
Expand
  • Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2020-09-17

  Revised date: 2020-10-05

  Online published: 2021-01-14

摘要

综述了本研究组近年来量子点人工光合成制氢体系的研究进展,重点从量子点与氢化酶模拟化合物、量子点与过渡金属离子、量子点敏化光阴极3个方面分析了影响制氢效率的主要因素,指出对光生电荷(电子和空穴)的有效捕获是提高人工光合成分解水制氢效率的关键,并展望了未来人工光合成发展方向。

本文引用格式

王景豪 , 南小磊 , 吴昊林 , 李旭兵 , 陈彬 , 佟振合 , 吴骊珠 . 量子点人工光合成制氢研究进展[J]. 科技导报, 2020 , 38(23) : 62 -74 . DOI: 10.3981/j.issn.1000-7857.2020.23.007

Abstract

Artificial photosynthetic hydrogen evolution is a promising way for solar-to-fuel conversion, which is considered as an important means to solve human energy crisis and environmental pollution. This article reviews the progress of quantum dot artificial photosynthesis hydrogen evolution system, focusing on the analysis of hydrogen evolution efficiency, including quantum dots with hydrogenase mimics, transition metal, and sensitized photocathodes. Specifically, we point out that the capture of photogenerated charges (electrons and holes) plays a pivotal role in improving hydrogen evolution efficiency, and look forward to the development direction of artificial photosynthesis.

参考文献

[1] Armaroli N, Balzani V. The future of energy supply:Challenges and opportunities[J]. Angewandte Chemie International Edition, 2007, 46(1/2):52-66.
[2] Gray H B. Powering the planet with solar fuel[J]. Nature Chemistry, 2009, 1(1):7.
[3] Zhang J, Chen Y, Wang X. Two-dimensional covalent carbon nitride nanosheets:Synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11):3092-3108.
[4] Ran J R, Zhang J, Yu J G, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chemical Society Reviews, 2014, 43(22):7787-7812.
[5] Barber J. Photosynthetic energy conversion:Natural and artificial[J]. Chemical Society Reviews, 2009, 38(1):185-196.
[6] Esswein A J, Nocera D G. Hydrogen production by molecular photocatalysis[J]. Chemical Reviews, 2007, 107(10):4022-4047.
[7] Ciamician G. The photochemistry of the future[J]. Science, 1912, 36(926):385-394.
[8] Wang D A, Hisatomi T, Takata T, et al. Core/Shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water[J]. Angewandte Chemie International Edition, 2013, 52(43):11252-11256.
[9] Wang X, Xu Q, Li M R, et al. Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3[J]. Angewandte Chemie International Edition, 2012, 51(52):13089-13092.
[10] Ohno T, Bai L, Hisatomi T, et al. Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light:Long-time operation and regeneration of activity[J]. Journal of the American Chemical Society, 2012, 134(19):8254-8259.
[11] Maeda K, Xiong A, Yoshinaga T, et al. Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light[J]. Angewandte Chemie International Edition, 2010, 49(24):4096-4099.
[12] Frischmann P D, Mahata K, Wuerthner F. Powering the future of molecular artificial photosynthesis with lightharvesting metallosupramolecular dye assemblies[J]. Chemical Society Reviews, 2013, 42(4):1847-1870.
[13] Han Z, Qiu F, Eisenberg R, et al. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst[J]. Science, 2012, 338(6112):1321-1324.
[14] Brown K A, Wilker M B, Boehm M, et al. Characterization of photochemical processes for H2 production by CdS nanorod-FeFe hydrogenase complexes[J]. Journal of the American Chemical Society, 2012, 134(12):5627-5636.
[15] Frey M. Hydrogenases:Hydrogen-activating enzymes[J]. Chembiochem, 2002, 3(2/3):153-160.
[16] Yu T, Zeng Y, Chen J, et al. Exceptional dendrimerbased mimics of diiron hydrogenase for the photochemical production of hydrogen[J]. Angewandte Chemie International Edition, 2013, 52(21):5631-5635.
[17] Wang F, Wang W G, Wang X J, et al. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution[J]. Angewandte Chemie International Edition, 2011, 50(14):3193-3197.
[18] Li C B, Li Z J, Yu S, et al. Interface-directed assembly of a simple precursor of[FeFe]-H2 ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water[J]. Energy & Environmental Science, 2013, 6(9):2597-2602.
[19] Nakahata M, Takashima Y, Yamaguchi H, et al. Redoxresponsive self-healing materials formed from hostguest polymers[J]. Nature Communications, 2011, 2:511.
[20] Tomatsu I, Hashidzume A, Harada A. Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based α-cyclodextrin and azobenzene polymers[J]. Journal of the American Chemical Society, 2006, 128(7):2226-2227.
[21] Wang F, Liang W J, Jian J X, et al. Exceptional poly (acrylic acid) -based artificial[FeFe] -hydrogenases for photocatalytic H2 production in water[J]. Angewandte Chemie International Edition, 2013, 52(31):8134-8138.
[22] Knoerzer P, Silakov A, Foster C E, et al. Importance of the protein framework for catalytic activity of FeFe-hydrogenases[J]. Journal of Biological Chemistry, 2012, 287(2):1489-1499.
[23] Wu S Z, Zeng F, Zhu H P, et al. Energy and electron transfers in photosensitive chitosan[J]. Journal of the American Chemical Society, 2005, 127(7):2048-2049.
[24] Jian J X, Liu Q, Li Z J, et al. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of[FeFe]-hydrogenase[J]. Nature Communications, 2013, 4:2695.
[25] Liang W J, Wang F, Wen M, et al. Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/FeFe-hydrogenase mimic system in neutral aqueous solutions[J]. Chemistry, 2015, 21(8):3187-3192.
[26] Wen M, Li X B, Jian J X, et al. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from[FeFe] -hydrogenase mimic and CdSe QDs in water[J]. Scientific Reports, 2016, 6:29851.
[27] Jian J X, Ye C, Wang X Z, et al. Comparison of H2 photogeneration by[FeFe] -hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution[J]. Energy & Environmental Science, 2016, 9(6):2083-2089.
[28] Wang X Z, Meng S L, Xiao H, et al. Identifying a real catalyst of[NiFe]-hydrogenase mimic for exceptional H2 photogeneration[J]. Angewandte Chemie International Edition, 2020, 59(42):1-6.
[29] Li Z J, Li X B, Wang J J, et al. A robust "artificial catalyst" in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2013, 6(2):465-469.
[30] Li Z J, Wang J J, Li X B, et al. An exceptional artificial photocatalyst, Nih-CdSe/CdS Core/Shell Hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution[J]. Advanced Materials, 2013, 25(45):6613-6618.
[31] Li Z J, Fan X B, Li X B, et al. Visible light catalysis-assisted assembly of Nih-QD hollow nanospheres in situ via hydrogen bubbles[J]. Journal of the American Chemical Society, 2014, 136(23):8261-8268.
[32] Chen X. Titanium dioxide nanomaterials and their energy applications[J]. Chinese Journal of Catalysis, 2009, 30(8):839-851.
[33] Chen X, Mao S S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7):2891-2959.
[34] Yu S, Li Z J, Fan X B, et al. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionicacid-regulated CdSe quantum dots TiO2 Ni(OH)2 assembly[J]. ChemSusChem, 2015, 8(4):642-649.
[35] Li X B, Gao Y J, Wang Y, et al. Self-assembled framework enhances electronic communication of ultrasmallsized nanoparticles for exceptional solar hydrogen evolution[J]. Journal of the American Chemical Society, 2017, 139(13):4789-4796.
[36] Yu S, Fan X B, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots[J]. Nature Communications, 2018, 9(1):4009.
[37] Huang M Y, Li X B, Gao Y J, et al. Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots[J]. Journal of Materials Chemistry A, 2018, 6(14):6015-21.
[38] Gao Y J, Li X B, Wu H L, et al. Exceptional catalytic nature of quantum dots for photocatalytic hydrogen evolution without external cocatalysts[J]. Advanced Functional Materials, 2018, 28(33):1801769.
[39] Fan X B, Yu S, Wang X, et al. Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration[J]. Advanced Materials, 2019, 31(7):1804872.
[40] Guo Q, Liang F, Gao X Y, et al. Metallic Co2C:A promising Co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots[J]. ACS Catalysis, 2018, 8(7):5890-5895.
[41] Wang Y, Ma Y, Li X B, et al. Unveiling catalytic sites in a typical hydrogen photogeneration system consisting of semiconductor quantum dots and 3d-metal ions[J]. Journal of the American Chemical Society, 2020, 142(10):4680-4689.
[42] Gao Y J, Li X B, Wang X Z, et al. Site- and spatial-selective integration of non-noble metal ions into quantum dots for robust hydrogen photogeneration[J]. Matter, 2020, 3(2):571-585.
[43] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[44] Wang Z, Shakya A, Gu J, et al. Sensitization of p-GaP with CdSe quantum dots:Light-stimulated hole injection[J]. Journal of the American Chemical Society, 2013, 135(25):9275-9278.
[45] Chitambar M, Wang Z, Liu Y, et al. Dye-sensitized photocathodes:Efficient light-stimulated hole injection into p-GaP under depletion conditions[J]. Journal of the American Chemical Society, 2012, 134(25):10670-10681.
[46] Moriya M, Minegishi T, Kumagai H, et al. Stable hydrogen evolution from CdS-Modified CuGaSe2 photoelectrode under visible-light irradiation[J]. Journal of the American Chemical Society, 2013, 135(10):3733-3735.
[47] Wu H L, Li X B, Tung C H, et al. Recent advances in sensitized photocathodes:From molecular dyes to semiconducting quantum dots[J]. Advanced Science, 2018, 5(4):1700684.
[48] Liu B, Li X B, Gao Y J, et al. A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation[J]. Energy & Environmental Science, 2015, 8(5):1443-1449.
[49] Gimbert-Suriñach C, Albero J, Stoll T, et al. Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots[J]. Journal of the American Chemical Society, 2014, 136(21):7655-7661.
[50] Li X B, Liu B, Wen M, et al. Hole-accepting-ligandmodified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy[J]. Advanced Science, 2016, 3(4):1500282.
[51] Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19):3256-3258.
[52] Li J, Gao X, Zhu L, et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications[J]. Energy & Environmental Science, 2020, 13(5):1326-1346.
[53] Li J, Gao X, Liu B, et al. Graphdiyne:A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production[J]. Journal of the American Chemical Society, 2016, 138(12):3954-3957.
[54] Li J, Gao X, Li Z, et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity[J]. Advanced Functional Materials, 2019, 29(16):1808079.
[55] Wu H L, Li X B, Wang Y, et al. Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7(45):26098-26104.
[56] Chen B, Wu L Z, Tung C H. Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-evolution cross-couplings[J]. Accounts of Chemical Research, 2018, 51(10):2512-2523.
[57] Meng Q Y, Zhong J J, Liu Q, et al. A cascade cross-coupling hydrogen evolution reaction by visible light catalysis[J]. Journal of the American Chemical Society, 2013, 135(51):19052-19055.
[58] Zheng Y W, Chen B, Ye P, et al. Photocatalytic hydrogen-evolution cross-couplings:Benzene C-H amination and hydroxylation[J]. Journal of the American Chemical Society, 2016, 138(32):10080-10083.
[59] Li X B, Tung C H, Wu L Z. Semiconducting quantum dots for artificial photosynthesis[J]. Nature Reviews Chemistry, 2018, 2(8):160-173.
[60] Huang C, Li X B, Tung C H, et al. Photocatalysis with quantum dots and visible light for effective organic synthesis[J]. Chemistry, 2018, 24(45):11530-11534.
[61] Li X B, Tung C H, Wu L Z. Quantum dot assembly for light-driven multielectron redox reactions, such as hydrogen evolution and CO2 reduction[J]. Angewandte Chemie International Edition, 2019, 58(32):10804-10811.
[62] Li X B, Li Z J, Gao Y J, et al. Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots[J]. Angewandte Chemie International Edition, 2014, 53(8):2085-2089.
[63] Zhao L M, Meng Q Y, Fan X B, et al. Photocatalysis with quantum dots and visible light:Selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water[J]. Angewandte Chemie International Edition, 2017, 56(11):3020-3024.
[64] Wu H L, Li X B, Tung C H, et al. Semiconductor quantum dots:An emerging candidate for CO2 photoreduction[J]. Advanced Materials, 2019, 31(36):1900709.
[65] Guo Q, Liang F, Li X B, et al. Efficient and slective CO2 reduction integrated with organic synthesis by solar energy[J]. Chem, 2019, 5(10):2605-2616.
文章导航

/