[1] Armaroli N, Balzani V. The future of energy supply:Challenges and opportunities[J]. Angewandte Chemie International Edition, 2007, 46(1/2):52-66.
[2] Gray H B. Powering the planet with solar fuel[J]. Nature Chemistry, 2009, 1(1):7.
[3] Zhang J, Chen Y, Wang X. Two-dimensional covalent carbon nitride nanosheets:Synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11):3092-3108.
[4] Ran J R, Zhang J, Yu J G, et al. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chemical Society Reviews, 2014, 43(22):7787-7812.
[5] Barber J. Photosynthetic energy conversion:Natural and artificial[J]. Chemical Society Reviews, 2009, 38(1):185-196.
[6] Esswein A J, Nocera D G. Hydrogen production by molecular photocatalysis[J]. Chemical Reviews, 2007, 107(10):4022-4047.
[7] Ciamician G. The photochemistry of the future[J]. Science, 1912, 36(926):385-394.
[8] Wang D A, Hisatomi T, Takata T, et al. Core/Shell photocatalyst with spatially separated co-catalysts for efficient reduction and oxidation of water[J]. Angewandte Chemie International Edition, 2013, 52(43):11252-11256.
[9] Wang X, Xu Q, Li M R, et al. Photocatalytic overall water splitting promoted by an alpha-beta phase junction on Ga2O3[J]. Angewandte Chemie International Edition, 2012, 51(52):13089-13092.
[10] Ohno T, Bai L, Hisatomi T, et al. Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light:Long-time operation and regeneration of activity[J]. Journal of the American Chemical Society, 2012, 134(19):8254-8259.
[11] Maeda K, Xiong A, Yoshinaga T, et al. Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light[J]. Angewandte Chemie International Edition, 2010, 49(24):4096-4099.
[12] Frischmann P D, Mahata K, Wuerthner F. Powering the future of molecular artificial photosynthesis with lightharvesting metallosupramolecular dye assemblies[J]. Chemical Society Reviews, 2013, 42(4):1847-1870.
[13] Han Z, Qiu F, Eisenberg R, et al. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst[J]. Science, 2012, 338(6112):1321-1324.
[14] Brown K A, Wilker M B, Boehm M, et al. Characterization of photochemical processes for H2 production by CdS nanorod-FeFe hydrogenase complexes[J]. Journal of the American Chemical Society, 2012, 134(12):5627-5636.
[15] Frey M. Hydrogenases:Hydrogen-activating enzymes[J]. Chembiochem, 2002, 3(2/3):153-160.
[16] Yu T, Zeng Y, Chen J, et al. Exceptional dendrimerbased mimics of diiron hydrogenase for the photochemical production of hydrogen[J]. Angewandte Chemie International Edition, 2013, 52(21):5631-5635.
[17] Wang F, Wang W G, Wang X J, et al. A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution[J]. Angewandte Chemie International Edition, 2011, 50(14):3193-3197.
[18] Li C B, Li Z J, Yu S, et al. Interface-directed assembly of a simple precursor of[FeFe]-H2 ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water[J]. Energy & Environmental Science, 2013, 6(9):2597-2602.
[19] Nakahata M, Takashima Y, Yamaguchi H, et al. Redoxresponsive self-healing materials formed from hostguest polymers[J]. Nature Communications, 2011, 2:511.
[20] Tomatsu I, Hashidzume A, Harada A. Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based α-cyclodextrin and azobenzene polymers[J]. Journal of the American Chemical Society, 2006, 128(7):2226-2227.
[21] Wang F, Liang W J, Jian J X, et al. Exceptional poly (acrylic acid) -based artificial[FeFe] -hydrogenases for photocatalytic H2 production in water[J]. Angewandte Chemie International Edition, 2013, 52(31):8134-8138.
[22] Knoerzer P, Silakov A, Foster C E, et al. Importance of the protein framework for catalytic activity of FeFe-hydrogenases[J]. Journal of Biological Chemistry, 2012, 287(2):1489-1499.
[23] Wu S Z, Zeng F, Zhu H P, et al. Energy and electron transfers in photosensitive chitosan[J]. Journal of the American Chemical Society, 2005, 127(7):2048-2049.
[24] Jian J X, Liu Q, Li Z J, et al. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of[FeFe]-hydrogenase[J]. Nature Communications, 2013, 4:2695.
[25] Liang W J, Wang F, Wen M, et al. Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/FeFe-hydrogenase mimic system in neutral aqueous solutions[J]. Chemistry, 2015, 21(8):3187-3192.
[26] Wen M, Li X B, Jian J X, et al. Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from[FeFe] -hydrogenase mimic and CdSe QDs in water[J]. Scientific Reports, 2016, 6:29851.
[27] Jian J X, Ye C, Wang X Z, et al. Comparison of H2 photogeneration by[FeFe] -hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution[J]. Energy & Environmental Science, 2016, 9(6):2083-2089.
[28] Wang X Z, Meng S L, Xiao H, et al. Identifying a real catalyst of[NiFe]-hydrogenase mimic for exceptional H2 photogeneration[J]. Angewandte Chemie International Edition, 2020, 59(42):1-6.
[29] Li Z J, Li X B, Wang J J, et al. A robust "artificial catalyst" in situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2013, 6(2):465-469.
[30] Li Z J, Wang J J, Li X B, et al. An exceptional artificial photocatalyst, Nih-CdSe/CdS Core/Shell Hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution[J]. Advanced Materials, 2013, 25(45):6613-6618.
[31] Li Z J, Fan X B, Li X B, et al. Visible light catalysis-assisted assembly of Nih-QD hollow nanospheres in situ via hydrogen bubbles[J]. Journal of the American Chemical Society, 2014, 136(23):8261-8268.
[32] Chen X. Titanium dioxide nanomaterials and their energy applications[J]. Chinese Journal of Catalysis, 2009, 30(8):839-851.
[33] Chen X, Mao S S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7):2891-2959.
[34] Yu S, Li Z J, Fan X B, et al. Vectorial electron transfer for improved hydrogen evolution by mercaptopropionicacid-regulated CdSe quantum dots TiO2 Ni(OH)2 assembly[J]. ChemSusChem, 2015, 8(4):642-649.
[35] Li X B, Gao Y J, Wang Y, et al. Self-assembled framework enhances electronic communication of ultrasmallsized nanoparticles for exceptional solar hydrogen evolution[J]. Journal of the American Chemical Society, 2017, 139(13):4789-4796.
[36] Yu S, Fan X B, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots[J]. Nature Communications, 2018, 9(1):4009.
[37] Huang M Y, Li X B, Gao Y J, et al. Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots[J]. Journal of Materials Chemistry A, 2018, 6(14):6015-21.
[38] Gao Y J, Li X B, Wu H L, et al. Exceptional catalytic nature of quantum dots for photocatalytic hydrogen evolution without external cocatalysts[J]. Advanced Functional Materials, 2018, 28(33):1801769.
[39] Fan X B, Yu S, Wang X, et al. Susceptible surface sulfide regulates catalytic activity of CdSe quantum dots for hydrogen photogeneration[J]. Advanced Materials, 2019, 31(7):1804872.
[40] Guo Q, Liang F, Gao X Y, et al. Metallic Co2C:A promising Co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots[J]. ACS Catalysis, 2018, 8(7):5890-5895.
[41] Wang Y, Ma Y, Li X B, et al. Unveiling catalytic sites in a typical hydrogen photogeneration system consisting of semiconductor quantum dots and 3d-metal ions[J]. Journal of the American Chemical Society, 2020, 142(10):4680-4689.
[42] Gao Y J, Li X B, Wang X Z, et al. Site- and spatial-selective integration of non-noble metal ions into quantum dots for robust hydrogen photogeneration[J]. Matter, 2020, 3(2):571-585.
[43] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[44] Wang Z, Shakya A, Gu J, et al. Sensitization of p-GaP with CdSe quantum dots:Light-stimulated hole injection[J]. Journal of the American Chemical Society, 2013, 135(25):9275-9278.
[45] Chitambar M, Wang Z, Liu Y, et al. Dye-sensitized photocathodes:Efficient light-stimulated hole injection into p-GaP under depletion conditions[J]. Journal of the American Chemical Society, 2012, 134(25):10670-10681.
[46] Moriya M, Minegishi T, Kumagai H, et al. Stable hydrogen evolution from CdS-Modified CuGaSe2 photoelectrode under visible-light irradiation[J]. Journal of the American Chemical Society, 2013, 135(10):3733-3735.
[47] Wu H L, Li X B, Tung C H, et al. Recent advances in sensitized photocathodes:From molecular dyes to semiconducting quantum dots[J]. Advanced Science, 2018, 5(4):1700684.
[48] Liu B, Li X B, Gao Y J, et al. A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation[J]. Energy & Environmental Science, 2015, 8(5):1443-1449.
[49] Gimbert-Suriñach C, Albero J, Stoll T, et al. Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots[J]. Journal of the American Chemical Society, 2014, 136(21):7655-7661.
[50] Li X B, Liu B, Wen M, et al. Hole-accepting-ligandmodified CdSe QDs for dramatic enhancement of photocatalytic and photoelectrochemical hydrogen evolution by solar energy[J]. Advanced Science, 2016, 3(4):1500282.
[51] Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19):3256-3258.
[52] Li J, Gao X, Zhu L, et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications[J]. Energy & Environmental Science, 2020, 13(5):1326-1346.
[53] Li J, Gao X, Liu B, et al. Graphdiyne:A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production[J]. Journal of the American Chemical Society, 2016, 138(12):3954-3957.
[54] Li J, Gao X, Li Z, et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity[J]. Advanced Functional Materials, 2019, 29(16):1808079.
[55] Wu H L, Li X B, Wang Y, et al. Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution[J]. Journal of Materials Chemistry A, 2019, 7(45):26098-26104.
[56] Chen B, Wu L Z, Tung C H. Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-evolution cross-couplings[J]. Accounts of Chemical Research, 2018, 51(10):2512-2523.
[57] Meng Q Y, Zhong J J, Liu Q, et al. A cascade cross-coupling hydrogen evolution reaction by visible light catalysis[J]. Journal of the American Chemical Society, 2013, 135(51):19052-19055.
[58] Zheng Y W, Chen B, Ye P, et al. Photocatalytic hydrogen-evolution cross-couplings:Benzene C-H amination and hydroxylation[J]. Journal of the American Chemical Society, 2016, 138(32):10080-10083.
[59] Li X B, Tung C H, Wu L Z. Semiconducting quantum dots for artificial photosynthesis[J]. Nature Reviews Chemistry, 2018, 2(8):160-173.
[60] Huang C, Li X B, Tung C H, et al. Photocatalysis with quantum dots and visible light for effective organic synthesis[J]. Chemistry, 2018, 24(45):11530-11534.
[61] Li X B, Tung C H, Wu L Z. Quantum dot assembly for light-driven multielectron redox reactions, such as hydrogen evolution and CO2 reduction[J]. Angewandte Chemie International Edition, 2019, 58(32):10804-10811.
[62] Li X B, Li Z J, Gao Y J, et al. Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots[J]. Angewandte Chemie International Edition, 2014, 53(8):2085-2089.
[63] Zhao L M, Meng Q Y, Fan X B, et al. Photocatalysis with quantum dots and visible light:Selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water[J]. Angewandte Chemie International Edition, 2017, 56(11):3020-3024.
[64] Wu H L, Li X B, Tung C H, et al. Semiconductor quantum dots:An emerging candidate for CO2 photoreduction[J]. Advanced Materials, 2019, 31(36):1900709.
[65] Guo Q, Liang F, Li X B, et al. Efficient and slective CO2 reduction integrated with organic synthesis by solar energy[J]. Chem, 2019, 5(10):2605-2616.