[1] Bard A J, Fox M A. Artificial photosynthesis-solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research, 1995, 28(3):141-145.
[2] Fujishima A, Honda, K. Electrochemical photolysis of water on semicondutor at a semiconductor electrode[J]. Nature, 1972, 238:37-38.
[3] Halmann M. Photoelectrochemical reduction of aquetous carbon dioxed on p-type galluim phosphide in liquid junction solar cells[J]. Nature, 1978, 275:115-116.
[4] Heller A. Conversion of sunlight into electrical-power and photoassisted electrolysis of water in photoelectrochemical cells[J]. Accounts of Chemical Research, 1981, 14(5):154-162.
[5] Bard A J. Photoeletrochemisty[J]. Science, 1980, 207(11):139-144.
[6] Winkler M T, Cox C R, Nocera D G, et al. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits[J]. PNAS, 2013, 110(12):E1076-E1082.
[7] Cheng W H, Richter M H, May M M, et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency[J]. ACS Energy Letters, 2018, 3(8):1795-1800.
[8] Li C, Wang Z L, Chen Z, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy & Environmental Science, 2016, 9(4):1327-1334.
[9] Pihosh Y, Minegishi T, Nandal V, et al. Ta3N5-Nanorods enabling highly efficient water oxidationvia advantageous light harvesting and charge collection[J]. Energy & Environmental Science, 2020, 13:1519-1530.
[10] Zhen C, Wu T T, Kadi M W, et al. Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation[J]. Chinese Journal of Catalysis, 2015, 36(12):2171-2177.
[11] Boettcher S W, Warren E L, Putnam M C, et al. Photoelectrochemical hydrogen evolution using Si microwire arrays[J]. Journal of the American Chemical Society, 2011, 133(5):1216-1219.
[12] Shi X J, Choi Y, Zhang K, et al. Efficient photoelectrochemical hydrogen production from bismuth vanadatedecorated tungsten trioxide helix nanostructures[J]. Nature Communications, 2014, 5:4775.
[13] Lin Y G, Hsu Y K, Chen Y C, et al. Plasmonic Ag@Ag3(PO4)1-x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation[J]. Energy & Environmental Science, 2012, 5(10):8917-8922.
[14] Zhong D K, Sun J W, Inumaru H, et al. Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes[J]. Journal of the American Chemical Society, 2009, 131(17):6086-6087.
[15] Ding C, Shi J, Wang D, et al. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias[J]. Physical Chemistry Chemical Physics, 2013, 15(13):4589-4595.
[16] Abe R, Higashi M, Domen K. Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation[J]. Journal of the American Chemical Society, 2010, 132(34):11828-11829.
[17] McDonald K J, Choi K S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation[J]. Energy & Environmental Science, 2012, 5(9):8553-8557.
[18] Zhong D K, Cornuz M, Sivula K, et al. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation[J]. Energy & Environmental Science, 2011, 4(5):1759-1764.
[19] Abdi F F, Han L H, Smets A H M, et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode[J]. Nature Communications, 2013, 4:2195.
[20] Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343(6174):990-994.
[21] Liu G J, Shi J Y, Zhang F X, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting[J]. Angewandte Chemie-International Edition, 2014, 53(28):7295-7299.
[22] Kenney M J, Gong M, Li Y G, et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation[J]. Science, 2013, 342(6160):836-840.
[23] Fan K, Li F S, Wang L, et al. Immobilization of a molecular ruthenium catalyst on hematite nanorod arrays for water oxidation with stable photocurrent[J]. ChemSusChem, 2015, 8(19):3242-3247.
[24] Yang J, Cooper J K, Toma F M, et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes[J]. Nature Materials, 2016, 16:335-341.
[25] Formal F L, Pendlebury S R, Cornuz M, et al. Back electron-hole recombination in hematite photoanodes for water splitting[J]. Journal of the American Chemical Society, 2014, 136(6):2564-2574.
[26] Zandi O, Klahr B M, Hamann T W. Highly photoactive Ti-doped ∂-Fe2O3 thin film electrodes:resurrection of the dead layer[J]. Energy & Environmental Science, 2013, 6(2):634-642.
[27] Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy & Environmental Science, 2011, 4(5):1781-1787.
[28] Kim E S, Nishimura N, Magesh G, et al. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation[J]. Journal of the American Chemical Society, 2013, 135(14):5375-5383.
[29] Liu C, Tang J Y, Chen H M, et al. A fully integrated nanosystem of wemiconductor nanowires for direct solar water splitting[J]. Nano Letters, 2013, 13(6):2989-2992.
[30] Cao D P, Luo W J, Feng J Y, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction[J]. Energy & Environmental Science, 2014, 7(2):752-759.
[31] Spray R L, McDonald K J, Choi K S. Enhancing photoresponse of nanoparticulate ∂-Fe2O3 electrodes by surface composition tuning[J]. Journal of Physical Chemistry C, 2011, 115(8):3497-3506.
[32] Formal F L, Tetreault, N, Cornuz, M, et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers[J]. Chemical Science, 2011, 2(4):737-743.
[33] Ahn H J, Yoon K Y, Kwak M J, et al. A titanium-doped SiO x passivation layer for greatly enhanced performance of a hematite-based photoelectrochemical system[J]. Angewandte Chemie-International Edition, 2016, 55(34):9922-9926.
[34] Yao T T, Chen R T, Li J J, et al. Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation[J]. Journal of the American Chemical Society, 2016, 138(41):13664-13672.
[35] Ye S, Ding C, Chen R, et al. Mimicking the key functions of photosystem II in artificial photosynthesis for photoelectrocatalytic water splitting[J]. Journal of the American Chemical Society, 2018, 140:3250-3256.
[36] Zhou X, Liu R, Sun K, et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide[J]. Energy & Environmental Science, 2015, 8(9):2644-2649.
[37] Smith W A, Sharp I D, Strandwitz N C, et al. Interfacial band-edge energetics for solar fuels production[J]. Energy & Environmental Science, 2015, 8(10):2851-2862.
[38] Chen Y, Li C W, Kanan M W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(49):19969-19972.
[39] Kim C, Jeon H S, Eom T, et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(43):13844-13850.
[40] Jang Y J, Jeong I, Lee J, et al. Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 using a ZnTe-based photocathode and a perovskite solar cell in tandem[J]. ACS Nano, 2016, 10(7):6980-6987.
[41] Wang Y, Fan S, AlOtaibi B, et al. A monolithically integrated gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane[J]. Chemistry, 2016, 22(26):8809-8813.
[42] Mistry H, Varela A S, Bonifacio C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7:12123.
[43] Albo J, Irabien A. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol[J]. Journal of Catalysis, 2016, 343:232-239.
[44] Ma S, Sadakiyo M, Luo R, et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer[J]. Journal of Power Sources, 2016, 301:219-228.
[45] Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates[J]. Nature Communications, 2016, 7:13869.
[46] Cheng W H, Richter M H, Sullivan I, et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination[J]. ACS Energy Letters, 2020, 5:470-476.
[47] Arai T, Sato S, Kajino T, et al. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst:Enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes[J]. Energy & Environmental Science, 2013, 6(4):1274.
[48] Huang X F, Shen Q, Liu J B, et al. A CO2 adsorptionenhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production[J]. Energy & Environmental Science, 2016, 9(10):3161-3171.
[49] Sahara G, Kumagai H, Maeda K, et al. Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)-Re(I) complex photocatalyst and a CoOx/TaON photoanode[J]. Journal of the American Chemical Society, 2016, 138(42):14152-14158.
[50] Arai T, Sato S, Morikawa T. A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor[J]. Energy & Environmental Science, 2015, 8(7):1998-2002.
[51] Torella J P, Gagliardi C J, Chen J S, et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system[J]. PNAS, 2015, 112(8):2337-2342.
[52] Liu C, Colon B C, Ziesack M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290):1210-1213.
[53] Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268):74-77.
[54] Sakimoto K K, Zhang S J, Yang P. Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system[J]. Nano Letters, 2016, 16(9):5883-5887.
[55] Son E J, Ko J W, Kuk S K, et al. Sunlight-assisted, biocatalytic formate synthesis from CO2 and water using silicon-based photoelectrochemical cells[J]. Chemical Communication, 2016, 52(62):9723-9726.
[56] Kuk S K, Singh R K, Nam D H, et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade[J]. Angewandte Chemie-International Edition, 2017, 56(14):3827-3832.