专题:太阳燃料

光电催化分解水和还原CO2研究进展

  • 丁春梅 ,
  • 姚婷婷 ,
  • 李灿
展开
  • 中国科学院大连化学物理研究所, 催化基础国家重点实验室, 洁净能源国家实验室(筹), 大连 116023
丁春梅,副研究员,研究方向为光电催化制备太阳能燃料,电子信箱:cmding@dicp.ac.cn

收稿日期: 2020-09-01

  修回日期: 2020-09-24

  网络出版日期: 2021-01-14

基金资助

国家自然科学基金项目(21872141,21633010);中国科学院大连化学物理研究所科研创新基金项目(DICP ZZBS201710,DICP ZZBS201809);中国科学院洁净能源创新研究院合作基金项目(DNL201911);中国科学院战略性先导科技专项(XDA21090102);辽宁省自然科学基金博士启动基金项目(20180540014)

Progress of photoelectrocatalytic water splitting and CO2 reduction

  • DING Chunmei ,
  • YAO Tingting ,
  • LI Can
Expand
  • Dalian Institute of Chemical Physics, Chinese Academy of Science, State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian 116023, China

Received date: 2020-09-01

  Revised date: 2020-09-24

  Online published: 2021-01-14

摘要

介绍了光电催化(PEC)分解水和还原CO2的基本原理、研究进展。探讨了提高PEC效率的关键策略,主要包括通过能带调控、形貌控制和敏化提高光吸收,通过助催化剂促进表面反应,以及通过构建局部偶极或异质电场、形貌调控和界面修饰促进电荷分离与传输等。

本文引用格式

丁春梅 , 姚婷婷 , 李灿 . 光电催化分解水和还原CO2研究进展[J]. 科技导报, 2020 , 38(23) : 75 -84 . DOI: 10.3981/j.issn.1000-7857.2020.23.008

Abstract

Photoelectrocatalytic (PEC) water splitting for H2 production and CO2 reduction for fuel production are important ways for solar energy conversion and utilization. However, the PEC efficiency is limited by problems such as poor light absorption, high overpotential and sluggish kinetics of surface reaction, and serious recombination of photogenerated carriers. Herein, we describe the principles of PEC water splitting and CO2 reduction, recent progress and strategies on increasing the PEC efficiency, including enhancing light absorption via energy band engineering, morphology control and sensitizing strategy, promoting surface reaction via loading cocatalyst, enhancing charge separation and transfer via introducing local dipole and heterojunction electric field, morphology control, interface engineering, etc.

参考文献

[1] Bard A J, Fox M A. Artificial photosynthesis-solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research, 1995, 28(3):141-145.
[2] Fujishima A, Honda, K. Electrochemical photolysis of water on semicondutor at a semiconductor electrode[J]. Nature, 1972, 238:37-38.
[3] Halmann M. Photoelectrochemical reduction of aquetous carbon dioxed on p-type galluim phosphide in liquid junction solar cells[J]. Nature, 1978, 275:115-116.
[4] Heller A. Conversion of sunlight into electrical-power and photoassisted electrolysis of water in photoelectrochemical cells[J]. Accounts of Chemical Research, 1981, 14(5):154-162.
[5] Bard A J. Photoeletrochemisty[J]. Science, 1980, 207(11):139-144.
[6] Winkler M T, Cox C R, Nocera D G, et al. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits[J]. PNAS, 2013, 110(12):E1076-E1082.
[7] Cheng W H, Richter M H, May M M, et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency[J]. ACS Energy Letters, 2018, 3(8):1795-1800.
[8] Li C, Wang Z L, Chen Z, et al. Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting[J]. Energy & Environmental Science, 2016, 9(4):1327-1334.
[9] Pihosh Y, Minegishi T, Nandal V, et al. Ta3N5-Nanorods enabling highly efficient water oxidationvia advantageous light harvesting and charge collection[J]. Energy & Environmental Science, 2020, 13:1519-1530.
[10] Zhen C, Wu T T, Kadi M W, et al. Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation[J]. Chinese Journal of Catalysis, 2015, 36(12):2171-2177.
[11] Boettcher S W, Warren E L, Putnam M C, et al. Photoelectrochemical hydrogen evolution using Si microwire arrays[J]. Journal of the American Chemical Society, 2011, 133(5):1216-1219.
[12] Shi X J, Choi Y, Zhang K, et al. Efficient photoelectrochemical hydrogen production from bismuth vanadatedecorated tungsten trioxide helix nanostructures[J]. Nature Communications, 2014, 5:4775.
[13] Lin Y G, Hsu Y K, Chen Y C, et al. Plasmonic Ag@Ag3(PO4)1-x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation[J]. Energy & Environmental Science, 2012, 5(10):8917-8922.
[14] Zhong D K, Sun J W, Inumaru H, et al. Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes[J]. Journal of the American Chemical Society, 2009, 131(17):6086-6087.
[15] Ding C, Shi J, Wang D, et al. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias[J]. Physical Chemistry Chemical Physics, 2013, 15(13):4589-4595.
[16] Abe R, Higashi M, Domen K. Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation[J]. Journal of the American Chemical Society, 2010, 132(34):11828-11829.
[17] McDonald K J, Choi K S. A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation[J]. Energy & Environmental Science, 2012, 5(9):8553-8557.
[18] Zhong D K, Cornuz M, Sivula K, et al. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation[J]. Energy & Environmental Science, 2011, 4(5):1759-1764.
[19] Abdi F F, Han L H, Smets A H M, et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode[J]. Nature Communications, 2013, 4:2195.
[20] Kim T W, Choi K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting[J]. Science, 2014, 343(6174):990-994.
[21] Liu G J, Shi J Y, Zhang F X, et al. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting[J]. Angewandte Chemie-International Edition, 2014, 53(28):7295-7299.
[22] Kenney M J, Gong M, Li Y G, et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation[J]. Science, 2013, 342(6160):836-840.
[23] Fan K, Li F S, Wang L, et al. Immobilization of a molecular ruthenium catalyst on hematite nanorod arrays for water oxidation with stable photocurrent[J]. ChemSusChem, 2015, 8(19):3242-3247.
[24] Yang J, Cooper J K, Toma F M, et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes[J]. Nature Materials, 2016, 16:335-341.
[25] Formal F L, Pendlebury S R, Cornuz M, et al. Back electron-hole recombination in hematite photoanodes for water splitting[J]. Journal of the American Chemical Society, 2014, 136(6):2564-2574.
[26] Zandi O, Klahr B M, Hamann T W. Highly photoactive Ti-doped ∂-Fe2O3 thin film electrodes:resurrection of the dead layer[J]. Energy & Environmental Science, 2013, 6(2):634-642.
[27] Hong S J, Lee S, Jang J S, et al. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation[J]. Energy & Environmental Science, 2011, 4(5):1781-1787.
[28] Kim E S, Nishimura N, Magesh G, et al. Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation[J]. Journal of the American Chemical Society, 2013, 135(14):5375-5383.
[29] Liu C, Tang J Y, Chen H M, et al. A fully integrated nanosystem of wemiconductor nanowires for direct solar water splitting[J]. Nano Letters, 2013, 13(6):2989-2992.
[30] Cao D P, Luo W J, Feng J Y, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction[J]. Energy & Environmental Science, 2014, 7(2):752-759.
[31] Spray R L, McDonald K J, Choi K S. Enhancing photoresponse of nanoparticulate ∂-Fe2O3 electrodes by surface composition tuning[J]. Journal of Physical Chemistry C, 2011, 115(8):3497-3506.
[32] Formal F L, Tetreault, N, Cornuz, M, et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers[J]. Chemical Science, 2011, 2(4):737-743.
[33] Ahn H J, Yoon K Y, Kwak M J, et al. A titanium-doped SiO x passivation layer for greatly enhanced performance of a hematite-based photoelectrochemical system[J]. Angewandte Chemie-International Edition, 2016, 55(34):9922-9926.
[34] Yao T T, Chen R T, Li J J, et al. Manipulating the interfacial energetics of n-type silicon photoanode for efficient water oxidation[J]. Journal of the American Chemical Society, 2016, 138(41):13664-13672.
[35] Ye S, Ding C, Chen R, et al. Mimicking the key functions of photosystem II in artificial photosynthesis for photoelectrocatalytic water splitting[J]. Journal of the American Chemical Society, 2018, 140:3250-3256.
[36] Zhou X, Liu R, Sun K, et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide[J]. Energy & Environmental Science, 2015, 8(9):2644-2649.
[37] Smith W A, Sharp I D, Strandwitz N C, et al. Interfacial band-edge energetics for solar fuels production[J]. Energy & Environmental Science, 2015, 8(10):2851-2862.
[38] Chen Y, Li C W, Kanan M W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(49):19969-19972.
[39] Kim C, Jeon H S, Eom T, et al. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(43):13844-13850.
[40] Jang Y J, Jeong I, Lee J, et al. Unbiased sunlight-driven artificial photosynthesis of carbon monoxide from CO2 using a ZnTe-based photocathode and a perovskite solar cell in tandem[J]. ACS Nano, 2016, 10(7):6980-6987.
[41] Wang Y, Fan S, AlOtaibi B, et al. A monolithically integrated gallium nitride nanowire/silicon solar cell photocathode for selective carbon dioxide reduction to methane[J]. Chemistry, 2016, 22(26):8809-8813.
[42] Mistry H, Varela A S, Bonifacio C S, et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene[J]. Nature Communications, 2016, 7:12123.
[43] Albo J, Irabien A. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol[J]. Journal of Catalysis, 2016, 343:232-239.
[44] Ma S, Sadakiyo M, Luo R, et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer[J]. Journal of Power Sources, 2016, 301:219-228.
[45] Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates[J]. Nature Communications, 2016, 7:13869.
[46] Cheng W H, Richter M H, Sullivan I, et al. CO2 reduction to CO with 19% efficiency in a solar-driven gas diffusion electrode flow cell under outdoor solar illumination[J]. ACS Energy Letters, 2020, 5:470-476.
[47] Arai T, Sato S, Kajino T, et al. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst:Enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes[J]. Energy & Environmental Science, 2013, 6(4):1274.
[48] Huang X F, Shen Q, Liu J B, et al. A CO2 adsorptionenhanced semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient formate production[J]. Energy & Environmental Science, 2016, 9(10):3161-3171.
[49] Sahara G, Kumagai H, Maeda K, et al. Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)-Re(I) complex photocatalyst and a CoOx/TaON photoanode[J]. Journal of the American Chemical Society, 2016, 138(42):14152-14158.
[50] Arai T, Sato S, Morikawa T. A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor[J]. Energy & Environmental Science, 2015, 8(7):1998-2002.
[51] Torella J P, Gagliardi C J, Chen J S, et al. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system[J]. PNAS, 2015, 112(8):2337-2342.
[52] Liu C, Colon B C, Ziesack M, et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290):1210-1213.
[53] Sakimoto K K, Wong A B, Yang P D. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268):74-77.
[54] Sakimoto K K, Zhang S J, Yang P. Cysteine-cystine photoregeneration for oxygenic photosynthesis of acetic acid from CO2 by a tandem inorganic-biological hybrid system[J]. Nano Letters, 2016, 16(9):5883-5887.
[55] Son E J, Ko J W, Kuk S K, et al. Sunlight-assisted, biocatalytic formate synthesis from CO2 and water using silicon-based photoelectrochemical cells[J]. Chemical Communication, 2016, 52(62):9723-9726.
[56] Kuk S K, Singh R K, Nam D H, et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade[J]. Angewandte Chemie-International Edition, 2017, 56(14):3827-3832.
文章导航

/