专题:太阳燃料

分子水氧化催化剂及其光电催化分解水研究进展

  • 呼斯楞 ,
  • 吴秀娟 ,
  • 孙立成
展开
  • 1. 大连理工大学, 精细化工国家重点实验室, 大连 116024;
    2. 瑞典皇家工学院化学科学与工程学院, 斯德哥尔摩 10044
呼斯楞,博士,研究方向为电催化水氧化反应,电子信箱:huclen@mail.dlut.edu.cn

收稿日期: 2020-09-04

  修回日期: 2020-09-27

  网络出版日期: 2021-01-14

基金资助

国家基础研究计划(973计划)项目(2014CB239402);国家自然科学基金项目(21403028);瑞典能源机构及瓦伦堡基金会项目

Progress of photoelectrocatalytic water splitting based on molecular water oxidation catalysts

  • LEE Husileng ,
  • WU Xiujuan ,
  • SUN Licheng
Expand
  • 1. State Key Laboratory of Fine Chemicals, Dalian University of Technology(DUT), Dalian 116024, China;
    2. Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Stockholm 10044, Sweden

Received date: 2020-09-04

  Revised date: 2020-09-27

  Online published: 2021-01-14

摘要

总结了近年来基于不同第一过渡系列金属的分子水氧化催化剂,包括贵金属分子水氧化催化剂和非金属分子水氧化催化剂;以及常用的氧化物半导体电极材料,例如α-Fe2O3、WO3和BiVO4等。概述了目前分子水氧化催化剂在电极表面的负载方式,包括物理吸附方式、共价键结合方式、分子催化剂修饰吸附基团方式、静电作用和π-π堆积作用等。提出构建高效稳定的光致水分解分子器件需要解决的问题,从而实现利用太阳能大规模裂解水制备清洁能源的设想。

本文引用格式

呼斯楞 , 吴秀娟 , 孙立成 . 分子水氧化催化剂及其光电催化分解水研究进展[J]. 科技导报, 2020 , 38(23) : 85 -93 . DOI: 10.3981/j.issn.1000-7857.2020.23.009

Abstract

Utilizing sunlight to split water into hydrogen and oxygen is an ideal way to convert solar energy into chemical energy and solve energy and environmental problems. In general, water splitting is hindered by the oxidation of water to oxygen which involves transfer processes of four electrons and four protons. To overcome this obstacle, an effective, robust and low-cost water oxidation catalysts (WOCs), and the anodes and photoanodes that perform fast oxygen evolution at low onset potentials, as well as benign conditions are highly desired. In this article we review recent advances in molecular water oxidation catalysts based on the first-row transition metal elements and advances in commonly used semiconductor materials such as α-Fe2O3, WO3, and BiVO4. Finally, we briefly discuss the assembly methods (covalent link, π-π stack, etc.) of molecular catalysts to electrodes and the classic examples of anode in catalytic oxidation of water.

参考文献

[1] Zhang B B, Sun L C. Artificial photosynthesis:Opportunities and challenges of molecular catalysts[J]. Chemical Society Reviews, 2019, 48(7):2216-2264.
[2] Ye S, Ding C, Liu M, et al. Water oxidation catalysts for artificial photosynthesis[J]. Advanced Materials, 2019, 31(50):1902069.
[3] Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å[J]. Nature, 2011, 473(7345):55-60.
[4] Garlyyev B, Fichtner J, Piqué O, et al. Revealing the nature of active sites in electrocatalysis[J]. Chemical Science, 2019, 10(35):8060-8075.
[5] Jin H Y, Wang J, Su D F, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society, 2015, 137(7):2688-2694.
[6] Zhao Y X, Vargas-Barbosa N M, Strayer M E, et al. Understanding the effect of monomeric iridium(III/IV) aquo complexes on the photoelectrochemistry of IrO(x)·nH2O-catalyzed water-splitting systems[J]. Journal of the American Chemical Society, 2015, 137(27):8749-8757.
[7] Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes[J]. Advanced Energy Materials, 2016, 6(23):16006-16021.
[8] Romain S, Vigara L, Llobet A. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes[J]. Accounts of Chemical Research, 2009, 42(12):1944-1953.
[9] Wang L P, Wu Q, Van V T. Acid-base mechanism for ruthenium water oxidation catalysts[J]. Inorganic Chemistry, 2010, 49(10):4543-4553.
[10] Gersten S W, Samuels G J, Meyer T J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer[J]. Journal of the American Chemical Society, 1982, 104(14):4029-4030.
[11] Concepcion J J, Jurss J W, Templeton J L, et al. Mediator-assisted water oxidation by the ruthenium "blue dimer" cis,cis-[(bpy)2(H2O)RuORu(OH2)(bpy)2]4+[J]. PNAS, 2008, 105(46):17632-17635.
[12] Duan L L, Fischer A, Xu Yunhua, et al. Isolated sevencoordinate Ru(IV) dimer complex with[HOHOH]-bridging ligand as an intermediate for catalytic water oxidation[J]. Journal of the American Chemical Society, 2009, 131(30):10397-10399.
[13] Duan L L, Bozoglian F, Manda S, et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II[J]. Nature Chemistry, 2012, 4(5):418-423.
[14] Mcdaniel N D, Coughlin F J, Tinker L L, et al. Cyclometalated iridium(III) aquo complexes:Efficient and tunable catalysts for the homogeneous oxidation of water[J]. Journal of the American Chemical Society, 2008, 130(1):210-217.
[15] Hull J F, Balcells D, Blakemore J D, et al. Highly active and robust Cp* iridium complexes for catalytic water oxidation[J]. Journal of the American Chemical Society, 2009, 131(25):8730-8731.
[16] Woods J A, Lalrempuia R, Petronilho A, et al. Carbene iridium complexes for efficient water oxidation:Scope and mechanistic insights[J]. Energy & Environmental Science, 2014, 7(7):2316-2328.
[17] Yoshinori N, Masa-Aki S, Takao S, Oxygen evolution by oxidation of water with manganese porphyrin dimers[J]. Angewandte Chemie International Edition, 1994, 33(18):1839-1841.
[18] Najafpour M M, Moghaddam A N, Dau H, et al. Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay[J]. Journal of the American Chemical Society, 2014, 136(20):7245-7248.
[19] Yin Q S, Tan J M, Besson C, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals[J]. Science, 2010, 328(41):342-345.
[20] Dogutan D K, McGuire R J, Nocera D G. Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles[J]. Journal of the American Chemical Society, 2011, 133(24):9178-9180.
[21] Wasylenko D J, Palmer R D, Schott E, et al. Interrogation of electrocatalytic water oxidation mediated by a cobalt complex[J]. Chemical Communications, 2012, 48(15):2107-2109.
[22] McCool N S, Robinson D M, Sheats J E, et al. A Co4O4 "cubane" water oxidation catalyst inspired by photosynthesis[J]. Journal of the American Chemical Society, 2011, 133(133):11446-11449.
[23] Evangelisti F, Güttinger R, Moré R, et al. Closer to photosystem II:A Co4O4 cubane catalyst with flexible ligand architecture[J]. Journal of the American Chemical Society, 2013, 135(50):18734-18737.
[24] Du H Y, Chen S C, Su X J, et al. Redox-active ligand assisted multielectron catalysis:A case of CoIII complex as water oxidation catalyst[J]. Journal of the American Chemical Society, 2018, 140(4):1557-1565.
[25] Barnett S M, Goldberg K I, Mayer J M. A soluble copper-bipyridine water-oxidation electrocatalyst[J]. Nature Chemistry, 2012, 4(6):498-502.
[26] Garrido-Barros P, Funes-Ardoiz I, Drouet S, et al. Redox non-innocent ligand controls wateroxidation overpotential in a new family of mononuclear Cu-based efficient catalysts[J]. Journal of the American Chemical Society, 2015, 137(21):6758-6761.
[27] Su X J, Gao M, Jiao L, et al. Electrocatalytic water oxidation by a dinuclear copper complex in a neutral aqueous solution[J]. Angewandte Chemie International Edition, 2015, 127(16):4991-4996.
[28] Ghosh T, Ghosh P, Maayan G. A copper-peptoid as a highly stable, efficient and reusable homogeneous water oxidation electrocatalyst[J]. ACS Catalysis, 2018, 8(11):10631-10640.
[29] Fillol J L, Codolà Z, Garcia-Bosch I, et al. Efficient water oxidation catalysts based on readily available iron coordination complexes[J]. Nature Chemistry, 2011, 3(10):807-813.
[30] Zhang M, Zhang M T, Hou C, et al. Homogeneous electrocatalytic water oxidation at neutral pH by a robust macrocyclic nickel(II) complex[J]. Angewandte Chemie, 2014, 53(48):13042-13048.
[31] De S, Zhang J G, Luqueb R, et al. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications[J]. Energy & Environmental Science, 2016, 9(11):3314-3347.
[32] Goȑlin M, Chernev P, Araújo J F, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts[J]. Journal of the American Chemical Society, 2016, 138(17):5603-5614.
[33] Kang D, Kim T W, Kubota S R, et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting[J]. Chemical Reviews, 2015, 115(23):12839-12887.
[34] Zhang B B, Li F, Yu F S, et al. Electrochemical and photoelectrochemical water oxidation by supported cobalt-oxo cubanes[J]. ACS Catalysis, 2014, 4(3):804-809.
[35] Klepser B M, Bartlett B M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation[J]. Journal of the American Chemical Society, 2014, 136(5):1694-1697.
[36] Meng Q, Zhang B, Fan L, et al. Efficient BiVO4 photoanodes by postsynthetic treatment:Remarkable improvements in photoelectrochemical performance from facile borate modification[J]. Angewandte Chemie International Edition, 2019, 58(52):19027-19033.
[37] Duan L L, Tong L P, Xu Y H, et al. Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells[J]. Energy & Environmental Science, 2011, 4(9):3296-3313.
[38] Swierk J R, Mallouk T E. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells[J]. Chemical Society Reviews, 2013, 42(24):2357-2387.
[39] Tohru W, Kiyoshi T, Koji T. Electrochemical oxidation of water to dioxygen catalyzed by the oxidized form of the bis(ruthenium-hydroxo) complex in H2O[J]. Angewandte Chemie International Edition, 2000, 39(8):1479-1482.
[40] Li L, Duan L L, Xu Y H, et al. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2[J]. Chemical Communications, 2010, 46(39):7307-7309.
[41] Tong L P, Göthelid M, Sun L C. Oxygen evolution at functionalized carbon surfaces:A strategy for immobilization of molecular water oxidation catalysts[J]. Chemical Communications, 2012, 48(80):10025-10027.
[42] Gerken J B, Rigsby M L, Ruther R E, et al. Modular synthesis of alkyne-substituted ruthenium polypyridyl complexes suitable for "click" coupling[J]. Inorganic Chemistry, 2013, 52(6):2796-2798.
[43] Liu F, Cardolaccia T, Hornstein B J, et al. Electrochemical oxidation of water by an adsorbed μ -oxo-bridged Ru complex[J]. Journal of the American Chemical Society, 2007, 129(9):2446-2447.
[44] Gao Y, Ding X, Liu J H, et al. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density[J]. Journal of the American Chemical Society, 2013, 135(11):4219-4222.
[45] Zhang L L, Gao Y, Ding X. A PMMA overlayer improving the surface-bound stability of photoanode for water splitting[J]. Electrochimica Acta, 2016, 207:130-134.
[46] Tomal F M, Sartorel A, Iurlo M, et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces[J]. Nature Chemistry, 2010, 2(10):826-831.
[47] Li F, Zhang B B, Li X N, et al. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes[J]. Angewandte Chemie International Edition, 2011, 50(51):12276-12279.
文章导航

/