[1] Zhang B B, Sun L C. Artificial photosynthesis:Opportunities and challenges of molecular catalysts[J]. Chemical Society Reviews, 2019, 48(7):2216-2264.
[2] Ye S, Ding C, Liu M, et al. Water oxidation catalysts for artificial photosynthesis[J]. Advanced Materials, 2019, 31(50):1902069.
[3] Umena Y, Kawakami K, Shen J R, et al. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å[J]. Nature, 2011, 473(7345):55-60.
[4] Garlyyev B, Fichtner J, Piqué O, et al. Revealing the nature of active sites in electrocatalysis[J]. Chemical Science, 2019, 10(35):8060-8075.
[5] Jin H Y, Wang J, Su D F, et al. In situ cobalt-cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society, 2015, 137(7):2688-2694.
[6] Zhao Y X, Vargas-Barbosa N M, Strayer M E, et al. Understanding the effect of monomeric iridium(III/IV) aquo complexes on the photoelectrochemistry of IrO(x)·nH2O-catalyzed water-splitting systems[J]. Journal of the American Chemical Society, 2015, 137(27):8749-8757.
[7] Dionigi F, Strasser P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes[J]. Advanced Energy Materials, 2016, 6(23):16006-16021.
[8] Romain S, Vigara L, Llobet A. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes[J]. Accounts of Chemical Research, 2009, 42(12):1944-1953.
[9] Wang L P, Wu Q, Van V T. Acid-base mechanism for ruthenium water oxidation catalysts[J]. Inorganic Chemistry, 2010, 49(10):4543-4553.
[10] Gersten S W, Samuels G J, Meyer T J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer[J]. Journal of the American Chemical Society, 1982, 104(14):4029-4030.
[11] Concepcion J J, Jurss J W, Templeton J L, et al. Mediator-assisted water oxidation by the ruthenium "blue dimer" cis,cis-[(bpy)2(H2O)RuORu(OH2)(bpy)2]4+[J]. PNAS, 2008, 105(46):17632-17635.
[12] Duan L L, Fischer A, Xu Yunhua, et al. Isolated sevencoordinate Ru(IV) dimer complex with[HOHOH]-bridging ligand as an intermediate for catalytic water oxidation[J]. Journal of the American Chemical Society, 2009, 131(30):10397-10399.
[13] Duan L L, Bozoglian F, Manda S, et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II[J]. Nature Chemistry, 2012, 4(5):418-423.
[14] Mcdaniel N D, Coughlin F J, Tinker L L, et al. Cyclometalated iridium(III) aquo complexes:Efficient and tunable catalysts for the homogeneous oxidation of water[J]. Journal of the American Chemical Society, 2008, 130(1):210-217.
[15] Hull J F, Balcells D, Blakemore J D, et al. Highly active and robust Cp* iridium complexes for catalytic water oxidation[J]. Journal of the American Chemical Society, 2009, 131(25):8730-8731.
[16] Woods J A, Lalrempuia R, Petronilho A, et al. Carbene iridium complexes for efficient water oxidation:Scope and mechanistic insights[J]. Energy & Environmental Science, 2014, 7(7):2316-2328.
[17] Yoshinori N, Masa-Aki S, Takao S, Oxygen evolution by oxidation of water with manganese porphyrin dimers[J]. Angewandte Chemie International Edition, 1994, 33(18):1839-1841.
[18] Najafpour M M, Moghaddam A N, Dau H, et al. Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay[J]. Journal of the American Chemical Society, 2014, 136(20):7245-7248.
[19] Yin Q S, Tan J M, Besson C, et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals[J]. Science, 2010, 328(41):342-345.
[20] Dogutan D K, McGuire R J, Nocera D G. Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles[J]. Journal of the American Chemical Society, 2011, 133(24):9178-9180.
[21] Wasylenko D J, Palmer R D, Schott E, et al. Interrogation of electrocatalytic water oxidation mediated by a cobalt complex[J]. Chemical Communications, 2012, 48(15):2107-2109.
[22] McCool N S, Robinson D M, Sheats J E, et al. A Co4O4 "cubane" water oxidation catalyst inspired by photosynthesis[J]. Journal of the American Chemical Society, 2011, 133(133):11446-11449.
[23] Evangelisti F, Güttinger R, Moré R, et al. Closer to photosystem II:A Co4O4 cubane catalyst with flexible ligand architecture[J]. Journal of the American Chemical Society, 2013, 135(50):18734-18737.
[24] Du H Y, Chen S C, Su X J, et al. Redox-active ligand assisted multielectron catalysis:A case of CoIII complex as water oxidation catalyst[J]. Journal of the American Chemical Society, 2018, 140(4):1557-1565.
[25] Barnett S M, Goldberg K I, Mayer J M. A soluble copper-bipyridine water-oxidation electrocatalyst[J]. Nature Chemistry, 2012, 4(6):498-502.
[26] Garrido-Barros P, Funes-Ardoiz I, Drouet S, et al. Redox non-innocent ligand controls wateroxidation overpotential in a new family of mononuclear Cu-based efficient catalysts[J]. Journal of the American Chemical Society, 2015, 137(21):6758-6761.
[27] Su X J, Gao M, Jiao L, et al. Electrocatalytic water oxidation by a dinuclear copper complex in a neutral aqueous solution[J]. Angewandte Chemie International Edition, 2015, 127(16):4991-4996.
[28] Ghosh T, Ghosh P, Maayan G. A copper-peptoid as a highly stable, efficient and reusable homogeneous water oxidation electrocatalyst[J]. ACS Catalysis, 2018, 8(11):10631-10640.
[29] Fillol J L, Codolà Z, Garcia-Bosch I, et al. Efficient water oxidation catalysts based on readily available iron coordination complexes[J]. Nature Chemistry, 2011, 3(10):807-813.
[30] Zhang M, Zhang M T, Hou C, et al. Homogeneous electrocatalytic water oxidation at neutral pH by a robust macrocyclic nickel(II) complex[J]. Angewandte Chemie, 2014, 53(48):13042-13048.
[31] De S, Zhang J G, Luqueb R, et al. Ni-based bimetallic heterogeneous catalysts for energy and environmental applications[J]. Energy & Environmental Science, 2016, 9(11):3314-3347.
[32] Goȑlin M, Chernev P, Araújo J F, et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts[J]. Journal of the American Chemical Society, 2016, 138(17):5603-5614.
[33] Kang D, Kim T W, Kubota S R, et al. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting[J]. Chemical Reviews, 2015, 115(23):12839-12887.
[34] Zhang B B, Li F, Yu F S, et al. Electrochemical and photoelectrochemical water oxidation by supported cobalt-oxo cubanes[J]. ACS Catalysis, 2014, 4(3):804-809.
[35] Klepser B M, Bartlett B M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation[J]. Journal of the American Chemical Society, 2014, 136(5):1694-1697.
[36] Meng Q, Zhang B, Fan L, et al. Efficient BiVO4 photoanodes by postsynthetic treatment:Remarkable improvements in photoelectrochemical performance from facile borate modification[J]. Angewandte Chemie International Edition, 2019, 58(52):19027-19033.
[37] Duan L L, Tong L P, Xu Y H, et al. Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells[J]. Energy & Environmental Science, 2011, 4(9):3296-3313.
[38] Swierk J R, Mallouk T E. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells[J]. Chemical Society Reviews, 2013, 42(24):2357-2387.
[39] Tohru W, Kiyoshi T, Koji T. Electrochemical oxidation of water to dioxygen catalyzed by the oxidized form of the bis(ruthenium-hydroxo) complex in H2O[J]. Angewandte Chemie International Edition, 2000, 39(8):1479-1482.
[40] Li L, Duan L L, Xu Y H, et al. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2[J]. Chemical Communications, 2010, 46(39):7307-7309.
[41] Tong L P, Göthelid M, Sun L C. Oxygen evolution at functionalized carbon surfaces:A strategy for immobilization of molecular water oxidation catalysts[J]. Chemical Communications, 2012, 48(80):10025-10027.
[42] Gerken J B, Rigsby M L, Ruther R E, et al. Modular synthesis of alkyne-substituted ruthenium polypyridyl complexes suitable for "click" coupling[J]. Inorganic Chemistry, 2013, 52(6):2796-2798.
[43] Liu F, Cardolaccia T, Hornstein B J, et al. Electrochemical oxidation of water by an adsorbed μ -oxo-bridged Ru complex[J]. Journal of the American Chemical Society, 2007, 129(9):2446-2447.
[44] Gao Y, Ding X, Liu J H, et al. Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density[J]. Journal of the American Chemical Society, 2013, 135(11):4219-4222.
[45] Zhang L L, Gao Y, Ding X. A PMMA overlayer improving the surface-bound stability of photoanode for water splitting[J]. Electrochimica Acta, 2016, 207:130-134.
[46] Tomal F M, Sartorel A, Iurlo M, et al. Efficient water oxidation at carbon nanotube-polyoxometalate electrocatalytic interfaces[J]. Nature Chemistry, 2010, 2(10):826-831.
[47] Li F, Zhang B B, Li X N, et al. Highly efficient oxidation of water by a molecular catalyst immobilized on carbon nanotubes[J]. Angewandte Chemie International Edition, 2011, 50(51):12276-12279.