[1] Trends in atmospheric carbon dioxide[EB/OL].[2020-10-15]. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.
[2] Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon:From CO2 to chemicals, materials, and fuels. Technological use of CO2[J]. Chemical Reviews, 2014, 114(3):1709-1742.
[3] 张丽君. 二氧化碳捕集与地下埋存国际进展[J]. 国土资源情报, 2007, 11:16-21.
[4] 马铭婧, 郗凤明, 凌江华, 等. 二氧化碳矿物封存技术研究进展[J]. 生态学杂志, 2019, 38(12):3854-3863.
[5] Li Z, Qu Y, Wang J, et al. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule, 2019, 3(2):570-583.
[6] Li Z, Wang J, Qu Y, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12):8544-8548.
[7] Gao P, Li S, Bu X, et al. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nature Chemistry, 2017, 9(10):1019-1024.
[8] Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120:7984-8034.
[9] Bansode A, Urakawa A. Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products[J]. Journal of Catalysis, 2014, 309:66-70.
[10] Fujitani T, Saito M, Kanai Y, et al. Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen[J]. Applied Catalysis A:General, 1995, 125(2):L199-L202.
[11] Collins S, Briand L, Gambaro L, et al. Adsorption and decomposition of methanol on gallium oxide polymorphs[J]. The Journal of Physical Chemistry C, 2008, 112(38):14988-15000.
[12] Chiavassa D, Collins S, Bonivardi A, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts:Kinetic modeling[J]. Chemical Engineering Journal, 2009, 150(1):204-212.
[13] Collins S, Baltanás M, Bonivardi A. An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3[J]. Journal of Catalysis, 2004, 226(2):410-421.
[14] Chiavassa D, Barrandeguy J, Bonivardi A, et al. Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts:Impact of reaction products[J]. Catalysis Today, 2008, 133/134/135:780-786.
[15] Iwasa N, Suzuki H, Terashita M. Methanol synthesis from CO2 under atmospheric pressure over supported Pd catalysts[J]. Catalysis Letters, 2004, 96(1):75-78.
[16] Díez-Ramírez J, Valverde J, Sánchez P, et al. CO2 hydrogenation to methanol at atmospheric pressure:Influence of the preparation method of Pd/ZnO catalysts[J]. Catalysis Letters, 2016, 146(2):373-382.
[17] Bahruji H, Bowker M, Jones W, et al. PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI)[J]. Faraday Discussions, 2017, 197:309-324.
[18] Ojelade O, Zaman S, Daous M, et al. Optimizing Pd:Zn molar ratio in PdZn/CeO2 for CO2 hydrogenation to methanol[J]. Applied Catalysis A:General, 2019, 584:117185.
[19] Malik A, Zaman S, Al-Zahrani A, et al. Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Applied Catalysis A:General, 2018, 560:42-53.
[20] Frei M, Mondelli C, García-Muelas R. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation[J]. Nature Communications, 2019, 10(1):3377.
[21] Rui N, Wang Z, Sun K, et al. CO2 hydrogenation to methanol over Pd/In2O3:Effects of Pd and oxygen vacancy[J]. Applied Catalysis B:Environmental, 2017, 218:488-497.
[22] Jiang H, Lin J, Wu X. Efficient hydrogenation of CO2 to methanol over Pd/In2O3/SBA-15 catalysts[J]. Journal of CO2 Utilization, 2020, 36:33-39.
[23] Liang X, Dong X, Lin G, et al. Carbon nanotube-supported Pd-ZnO catalyst for hydrogenation of CO2 to methanol[J]. Applied Catalysis B:Environmental, 2009, 88(3):315-322.
[24] Kong H, Li H, Lin G, et al. Pd-Decorated CNT-Promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol[J]. Catalysis Letters, 2011, 141(6):886.
[25] Wang J, Lu S, Li J, et al. A remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes[J]. Chemical Communications, 2015, 51(99):17615-17618.
[26] Erdöhelyi A, Pásztor M, Solymosi F. Catalytic hydrogenation of CO2 over supported palladium[J]. Journal of Catalysis, 1986, 98(1):166-177.
[27] Gotti A, Prins R. Basic metal oxides as co-catalysts in the conversion of synthesis gas to methanol on supported palladium catalysts[J]. Journal of Catalysis, 1998, 175(2):302-311.
[28] Koizumi N, Jiang X, Kugai J, et al. Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis[J]. Catalysis Today, 2012, 194(1):16-24.
[29] Shao C, Fan L, Fujimoto K, et al. Selective methanol synthesis from CO2/H2 on new SiO2-supported PtW and PtCr bimetallic catalysts[J]. Applied Catalysis A:General, 1995, 128(1):L1-L6.
[30] Han Z, Tang C Z, Wang J J, et al. Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. Journal of Catalysis, 2020, doi:10.1016/j.jcat.2020.06.018.
[31] Men Y L, Liu Y, Wang Q Q, et al. Highly dispersed Ptbased catalysts for selective CO2 hydrogenation to methanol at atmospheric pressure[J]. Chemical Engineering Science, 2019, 200:167-175.
[32] Sun K H, Rui N, Zhang Z T, et al. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chemistry, 2020, 22(15):5059-5066.
[33] Wu C Y, Zhang P, Zhang Z F, et al. Efficient hydrogenation of CO2 to methanol over supported subnanometer gold catalysts at low temperature[J]. ChemCatChem, 2017, 9(19):3691-3696.
[34] Sakurai H, Haruta M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides[J]. Catalysis Today, 1996, 29(1):361-365.
[35] Hartadi Y, Widmann D, Behm R J. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions:Support and particle size effects[J]. ChemSusChem, 2015, 8(3):456-465.
[36] Vourros A, Garagounis I, Kyriakou V. Carbon dioxide hydrogenation over supported Au nanoparticles:Effect of the support[J]. Journal of CO2 Utilization, 2017, 19:247-256.
[37] Yang X F, Kattel S, Senanayake S D, et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeO x/TiO2 Interface[J]. Journal of the American Chemical Society, 2015, 137(32):10104-10107.
[38] Grabowski R, Słoczyński J, Śliwa M, et al. Influence of polymorphic ZrO2 phases and the silver electronic state on the activity of Ag/ZrO2 catalysts in the hydrogenation of CO2 to methanol[J]. ACS Catalysis, 2011, 1(4):266-278.
[39] Furukawa S, Komatsu T. Intermetallic compounds:Promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis[J]. ACS Catalysis, 2017, 7(1):735-765.
[40] Choi H, Oh S, Trung-Tran S, et al. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol[J]. Journal of Catalysis, 2019, 376:68-76.
[41] Manrique R, Jiménez R, Rodríguez-Pereira J, et al. Insights into the role of Zn and Ga in the hydrogenation of CO2 to methanol over Pd[J]. International Journal of Hydrogen Energy, 2019, 44(31):16526-16536.
[42] Manrique R, Rodríguez-Pereira J, Rincón-Ortiz S, et al. The nature of the active sites of Pd-Ga catalysts in the hydrogenation of CO2 to methanol[J]. Catalysis Science & Technology, 2020, 10(19):6644-6658.
[43] Ota A, Kunkes E, Kasatkin I, et al. Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts[J]. Journal of Catalysis, 2012, 293:27-38.
[44] Collins S, Delgado J, Mira C, et al. The role of Pd-Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst[J]. Journal of Catalysis, 2012, 292:90-98.
[45] Oyola-Rivera O, Baltanás M, Cardona-Martínez N. CO2 hydrogenation to methanol and dimethyl ether by PdPd2Ga catalysts supported over Ga2O3 polymorphs[J]. Journal of CO2 Utilization, 2015, 9:8-15.
[46] Snider J, Streibel V, Hubert M, et al. Revealing the synergy between oxide and alloy phases on the performance of bimetallic In-Pd catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(4):3399-3412.
[47] Studt F, Sharafutdinov I, Abild-Pedersen F, et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol[J]. Nature Chemistry, 2014, 6(4):320-324.
[48] Sharafutdinov I, Elkjær C F, de Carvalho H W P, et al. Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol[J]. Journal of Catalysis, 2014, 320:77-88.
[49] Gallo A, Snider J, Sokaras D, et al. Ni5Ga3 catalysts for CO2 reduction to methanol:Exploring the role of Ga surface oxidation/reduction on catalytic activity[J]. Applied Catalysis B:Environmental, 2020, 267:118369.
[50] Tang Q L, Shen Z M, Huang L, et al. Synthesis of methanol from CO2 hydrogenation promoted by dissociative adsorption of hydrogen on a Ga3Ni5(221) surface[J]. Physical Chemistry Chemical Physics, 2017, 19(28):18539-18555.
[51] Tang Q L, Ji W C, Russell C K, et al. Understanding the catalytic mechanisms of CO2 hydrogenation to methanol on unsupported and supported Ga-Ni clusters[J]. Applied Energy, 2019, 253(1):113623.
[52] Wang J, Li G, Li Z, et al. A highly selective and stable ZnO-ZrO 2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10):e1701290.
[53] Wang J, Tang C, Li G, et al. High-performance MaZrOx (Ma=Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11):10253-10259.
[54] Li W, Wang K, Huang J, et al. MxOy-ZrO2(M=Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36):33263-33272.
[55] Wang X, Wang Y, Yang C, et al. A novel microreaction strategy to fabricate superior hybrid zirconium and zinc oxides for methanol synthesis from CO2[J]. Applied Catalysis A:General, 2020, 595:117507.
[56] Temvuttirojn C, Poo-arporn Y, Chanlek N, et al. Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts[J]. Industrial & Engineering Chemistry Research, 2020, 59(13):5525-5535.
[57] Ye J Y, Liu C J, Mei D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110):A DFT study[J]. ACS Catalysis, 2013, 3(6):1296-1306.
[58] Sun K, Fan Z, Ye J, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. Journal of CO2 Utilization, 2015, 12:1-6.
[59] Tsoukalou A, Abdala P, Stoian D, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol:An operando XAS-XRD and in-situ TEM study[J]. Journal of the American Chemical Society, 2019, 141(34):13497-13505.
[60] Dang S S, Qin B, Yang Y, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Science Advances, 2020, 6(25):eaaz2060.
[61] Martin O, Martín A, Mondelli C, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21):6261-6265.
[62] Frei M, Mondelli C, Cesarini A, et al. Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol[J]. ACS Catalysis, 2020, 10(2):1133-1145.
[63] Chen T, Cao C, Chen T, et al. Unraveling highly tunable selectivity in CO2 hydrogenation over bimetallic In-Zr oxide catalysts[J]. ACS Catalysis, 2019, 9(9):8785-8797.
[64] Chou C Y, Lobo R F. Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts[J]. Applied Catalysis A:General, 2019, 583:117144.