[1] 冯华. 嫦娥五号创造五项中国首次(权威发布)[EB/OL]. (2020-12-18)[2020-12-30]. http://cpc.people.com.cn/n1/2020/1218/c419242-31970609.html.
[2] 中国信通院发布《量子信息技术发展与应用研究报告(2020年)》[EB/OL]. (2020-12-15)[2020-12-30]. http://www.mei.net.cn/xghy/202012/1608033574.html.
[3] 量子计算原型机"九章" 问世, 超越谷歌"量子霸权"[EB/OL]. (2020-12-04)[2020-12-30]. http://dzb.whb.cn/2020-12-04/3/detail-706842.html.
[4] Zhong H S, Wang H, Deng Y H, et al. Quantum computational advantage using photons[J]. Science, 2020, 370(6523):1460-1463.
[5] Stockman M I. Nanoplasmonics:Past, present, and glimpse into future[J]. Optics Express. 2011, 19(22):22029-22106.
[6] Halas N J, Lal S, Chang W S, et al. Nordlander, plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 2011, 111(6):3913-3961.
[7] Valev V K, Baumberg J J, Sibilia C, et al. Chirality and chiroptical effects inplasmonic nanostructures:Fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18):2517-2534.
[8] Zannotti A, Denz C, Alonso M A, et al. Shaping caustics into propagation-invariant light[J]. Nature Communications, 2020, 11:1-7.
[9] Huo P C, Song M W, Zhu W Q, et al. Photorealistic fullcolor nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9):1171-1179.
[10] Palmer B A, Yallapragada V J, Schiffmann N, et al. A highly reflective biogenic photonic material from coreshell birefringent nanoparticles[J]. Nature Nanotechnology, 2020, 15(2):138-144.
[11] Singh S C, ElKabbash M, Li Z L, et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation[J]. Nature Sustainability, 2020, 3:938-946.
[12] Fang X Y, Ren H R, Gu M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 2020, 14:102-108.
[13] Kan Y H, Andersen S K H, Ding F, et al. Metasurface-enabled generation of circularly polarized single photons[J]. Advanced Materials, 2020, 32(16):1907832.
[14] Epstein I, Alcaraz D, Huang Z Q, et al. Far-field excitation of single graphene plasmon cavities with ultracom-pressed mode volumes[J]. Science, 2020, 368(6496):1219.
[15] Zhang F, Cai H B, Zhou W M, et al. Enhanced energy coupling for indirect-drive fast-ignition fusion targets[J]. Nature Physics, 2020, 16:810-814.
[16] 高功率激光物理联合实验室. 上海光机所"神光Ⅱ" 5 PW装置圆满完成"飞秒+纳秒组合打靶" 中外合作物理实验[EB/OL]. (2020-03-20)[2020-12-30]. http://www.siom.cas.cn/jgsz/ggljgwlgjsys/xwdt/202003/t20200330_5521787.html.
[17] Li N, Guo X D, Yang X X, et al. Direct observation of highly confined phonon polaritons in suspended mono-layer hexagonal boron nitride[J]. Nature Materials, 2021, 20:43-48.
[18] Huang X J, Guo Q Y, Yang D D, et al. Reversible 3D laser printing of perovskite quantum dots inside a trans-parent medium[J]. Nature Photonics, 2020, 14:82-88.
[19] Qiang J J, Tutunnikov I, Lu P F, et al. Echo in a single vibrationally excited molecule[J]. Nature Physics, 2020, 16:328-333.
[20] Li Z P, Huang X, Cao Y, et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 2020, 8(9):1532-1540.
[21] Edrei E, Scarcelli G. Optical focusing beyond the diffraction limit via vortex-assisted transient microlenses[J]. ACS Photonics, 2020, 7(4):914-918.
[22] Turpin A, Musarra G, Kapitany V, et al. Spatial images from temporal data[J]. Optica, 2020, 7(8):900-905.
[23] Meem M, Banerji S, Majumder A, et al. Inverse-designed achromatic flat lens enabling imaging across the visible and near-ingrared with diameter >3 mm and NA=0.3[J]. Applied Physics Letters, 2020, 117(4):041101.
[24] Wu Y C, Rivenson Y, Wang H D, et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning[J]. Nature Methods, 2019, 16:1323-1331.
[25] Yang B, Chen G, Ghafoor A, et al. Sub-nanometre resolution in single-molecule photoluminescence imaging[J]. Nature Photonics, 2020, 14:693-699.
[26] 中国科学家构建量子计算原型机"九章"[EB/OL]. (2020-12-04)[2020-12-30]. https://baijiahao.baidu.com/s?id=1685117941188828814&wfr=spider&for=pc.
[27] Yang F, Gyger F, Thévenaz L, et al. Intense Brillouin amplification in gas using hollow-core waveguides[J]. Nature Photonics, 2020, 14:700-708.
[28] Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481):1018-1021.
[29] Konatham S R, Maram R, Cortés L R, et al. Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing[J]. Nature Communication, 2020, 11:1-12.
[30] Patsyk A, Sivan U, Segev M, et al. Observation of branched flow of light[J]. Nature, 2020, 583:60-65.
[31] Shen L, Lin X, Shalaginov M, et al. Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials[J]. Applied Physics Reviews, 2020, 7:021403.
[32] Wang P, Zheng Y L, Chen X F, et al. Localization and delocalization of light in photonic moiré lattices[J]. Nature, 2020, 577:42-46.
[33] Davis A L, Thomas K N, Goetz F E, et al. Ultra-black camouflage in deep-sea fishes[J]. Current Biology, 2020, 30(17):3470.
[34] Jaimes-Nájera A, Gómez-Correa J E, Coello V, et al. Single function crystalline lens capable of mimicking ciliary body accommodation[J]. Optics Express, 2020, 11(7):3699-3716.
[35] Schubert M, Woolfson L, Barnard I R M, et al. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers[J]. Nature Photonics, 2020, 14:452-458.
[36] Spiryova D, Vorobev A, Klimontov V, et al. Optical uncaging of ADP reveals the early calcium dynamics in single, freely moving platelets[J]. Biomedical Optics Express, 2020, 11(6):3319-3330.
[37] He C, Chang J T, Hu Q, et al. Complex vectorial optics through gradient index lens cascades[J]. Nature Communication, 2019, 10:1-8.
[38] Xiong Y F, Liao Q B, Huang Z P, et al. Ultrahigh rsponsivity photodetectors of 2D covalent organic frameworks integrated on graphene[J]. Advanced Materials, 2020, 32(9):1907242.
[39] Kfir O, Lourenço-Martins H, Storeck G, et al. Control-ling free electrons with optical whispering-gallery modes[J]. Nature, 2020, 582(7810):46-49.
[40] Chen J, Wan C, Chong A, et al. Subwavelength focusing of a spatio-temporal wave packet with transverse orbital angular momentum[J]. Optics Express, 2020, 28(12):18472-18482.
[41] Li L, Liu Z X, Ren X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 2020, 368(6498):1487.
[42] Xiao L, Deng T S, Wang K K. Non-Hermitian bulkboundary correspondence in quantum dynamics[J]. Nature Physics, 2020, 16:761-766.
[43] Couch D E, Hickstein D D, Winters D G, et al. Ultrafast 1 MHz vacuum-ultraviolet source via highly cascaded harmonic generation in negative-curvature hollow-core fibers[J]. Optica, 2020, 7(7):832-837.
[44] Berto P, Philippet L, Osmond J, et al. Tunable and freeform planar optics[J]. Nature Photonics, 2019, 13:649-656.
[45] Steeves J B, Wallace J K, Kettenbeil C, et al. Picometer wavefront sensing using the phase-contrast technique[J]. Optica, 2020, 7(10):1267-1274.
[46] Tuniz A, Bickerton O, Diaz F J, et al. Modular nonlinear hybrid plasmonic circuit[J]. Nature Communication, 2020, 11:1-8.
[47] Kogos L C, Li Y Z, Liu J N, et al. Plasmonic ommatidia for lensless compound-eye vision[J]. Nature Communication, 2020, 11:1-9.
[48] Wang Y, Yu J Y, Mao Y F, et al. Stable, high-performance sodium-based plasmonic devices in the near infrared[J]. Nature, 2020, 581:401-405.
[49] Junjuri R, Gundawar M K. A low-cost LIBS detection system combined with chemometrics for rapid identification of plastic waste[J]. Waste Manage, 2020, 117:48-57.
[50] Ren H, Yu S D, Chao L F, et al. Efficient and stable Ruddlesden-Popper perovskite solar cell with tailored interlayer molecular interaction[J]. Nature Photonics, 2020, 14:154-163.
[51] Du J, Shi J J. 2D Ca3Sn2S7 chalcogenide perovskite:A graphene-like semiconductor with direct bandgap 0.5 eV and ultrahigh carrier mobility 6.7×104 cm2·V-1·s-1[J]. Advanced Materials, 2019, 31:1905643.
[52] Situ G, Fleischer J W. Dynamics of the Berezinskii-Kosterlitz-Thouless transition in a photon fluid[J]. Nature Photonics, 2020, 14:517-522.
[53] Chong A, Wan C H, Chen J, et al. Generation of spatio-temporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14:350-354.
[54] Gao X M, Yang L C, Lin H, et al. Dirac-vortex topological cavities[J]. Nature Nanotechnology, 2020, 15:1012-1018.
[55] Fu Q D, Wang P, Huang C M, et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices[J]. Nature Photonics, 2020, 14:663-668.
[56] Optics in 2020[EB/OL]. (2020-12-01)[2020-12-30]. https://www.osa-opn.org/home/articles/volume_31/december_2020/features/optics_in_2020/.
[57] 中国光学十大进展2020入选名单[EB/OL]. (2020-12-18)[2020-12-30]. http://www.opticsjournal.net/columns/zggx?type=lntj_index&year=2020.