[1] Xie L, Liu B. Weather forecasting|marine meteorology[J]. Encyclopedia of Atmospheric Sciences, 2015, 2(3816):287-292.
[2] Liu B, Yan Y, Zhu C, et al. Record-breaking Meiyu rain-fall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation[J]. Geophysical Research Letters, 2020, 47(22). doi:10.1029/2020GL090342.
[3] Takaya Y, Ishikawa I, Kobayashi C, et al. Enhanced MeiyuBaiu rainfall in early summer 2020:After math of the 2019 super IOD event[J]. Geophysical Research Letters, 2020, 47(22). doi:10.1029/2020GL090671.
[4] Duan A, Hu D, Hu W, et al. Precursor effect of the Tibetan Plateau heating anomaly on the seasonal march of the East Asian summer monsoon precipitation[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(23). doi:10.1029/2020JD032948.
[5] Li X, Ting M, You Y, et al. South Asian summer monsoon response to aerosol-forced sea surface temperatures[J]. Geophysical Research Letters, 2020, 47(1). doi:10.1029/2019GL085329.
[6] Hari V, Villarini G, Karmakar S, et al. Northward propagation of the Inter Tropical Convergence Zone and strengthening of Indian summer monsoon rainfall[J]. Geophysical Research Letters, 2020, 47(23). doi:10.1029/2020GL089823.
[7] Hu P, Chen W, Chen S, et al. Extremely early summer monsoon onset in the South China Sea in 2019 following an El Niño event[J]. Monthly Weather Review, 2020, 148(5):1877-1890.
[8] Jiang N, Zhu C. Seasonal forecast of South China Sea summer monsoon onset disturbed by the cold tongue La Niña in recent decade[J]. Advances in Atmospheric Sciences, 2021, 38:147-155.
[9] Fan F, Lin R, Fang X, et al. Influence of the Eastern Pacific and central Pacific types of ENSO on the South Asian summer monsoon[J]. Advances in Atmospheric Sciences, 2021, 38:12-28.
[10] Tseng Y, Ding R, Zhao S, et al. Could the North Pacific Oscillation be modified by the initiation of the East Asian Winter Monsoon?[J]. Journal of Climate, 2021, 34(1):361-377.
[11] Abdillah M R, Kanno Y, Iwasaki T, et al. Cold surge pathways in East Asia and their tropical impacts[J]. Journal of Climate, 2021, 34(1):157-170.
[12] Nikumbh A C, Chakraborty A, Bhat G S, et al. Largescale extreme rainfall-producing synoptic systems of the Indian Summer Monsoon[J]. Geophysical Research Letters, 2020, 47(11). doi:10.1029/2020GL088403.
[13] Joseph J, Girishkumar M S, Mcphaden M J, et al. Diurnal variability of atmospheric cold pool events and associated air-sea interactions in the Bay of Bengal during the summer monsoon[J]. Climate Dynamics, 2020. doi:10.1007/s00382-020-05506-w.
[14] Hu P, Huangfu J, Chen W, et al. South China Sea summer monsoon withdrawal and the synoptic-scale wave train over the western North Pacific[J]. International Journal of Climatology, 2020, 40:5599-5611.
[15] Leung Y T, Zhou W, Wang D, et al. Remote Tropical Western Indian Ocean forcing on changes in June precipitation in South China and the Indochina Peninsula[J]. Journal of Climate, 2020, 33(17):7553-7566.
[16] Huang X, Zhou T, Dai A, et al. South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation[J]. Science Advances, 2020, 6(11):6546.
[17] Xin X, Wu T, Zhang J, et al. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon[J]. International Journal of Climatology, 2020, 40:6423-6440.
[18] Zhou S, Huang G, Huang P. Inter-model spread of the changes in the East Asian summer monsoon system in CMIP5/6 models[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(24). doi:10.1029/2020JD033016.
[19] Ashrit R, Indira Rani S, Kumar S, et al. IMDAA regional reanalysis:Performance evaluation during Indian summer monsoon season[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(2). doi:10.1029/2019JD030973.
[20] Suman M, Maity R. Southward shift of precipitation extremes over south Asia:Evidences from CORDEX data[J]. Scientific Reports, 2020, 10(1):6452.
[21] Moon S, Ha K J. Future changes in monsoon duration and precipitation using CMIP6[J]. Npj Climate and Atmospheric Science, 2020, 3, 45. doi:10.1038/s41612-020-00151-w.
[22] Park C, Lee G, Kim G, et al. Future changes in precipitation for identified sub-regions in East Asia using biascorrected multi-RCMs[J]. International Journal of Climatology, 2020. doi:10.1002/joc.6936.
[23] Murakami H, Delworth T L, Cooke W F, et al. Detected climatic change in global distribution of tropical cyclones[J]. Proceedings of the National Academy of Sciences, 2020, 117(20):10706-10714.
[24] Wu L, Wen Z, Huang R. Tropical cyclones in a warming climate[J]. Science China Earth Science, 2020, 63(3):146-148.
[25] Yamaguchi M, Chan J C L, Moon I J, et al. Global warming changes tropical cyclone translation speed[J]. Nature Communications, 2020, 11(1):47.
[26] Zhang G, Murakami H, Knutson T R, et al. Tropical cyclone motion in a changing climate[J]. Science Advances, 2020, 6(17):7610.
[27] Qi P, Wang A. Numerical simulation of tropical cyclone generated waves in South China Sea during winter monsoon surge[J]. Scientific Reports, 2020, 10:22156. doi:10.1038/s41598-020-79204-2.
[28] Zhao J, Zhan R, Wang Y. Different responses of tropical cyclone tracks over the western north Pacific and north Atlantic to two distinct sea surface temperature warming patterns[J]. Geophysical Research Letters, 2020, 47(7). doi:10.1029/2019GL086923.
[29] Zhao J, Zhan R, Wang Y, et al. Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density[J]. Science Advances. 2020, 6(41):1-8.
[30] Chu J E, Lee S S, Timmermann A, et al. Reduced tropical cyclone densities and ocean effects due to anthropogenic greenhouse warming[J]. Science Advances, 2020, 6(51):5109.
[31] Liu K S, Chan J C L. Recent increase in extreme intensity of tropical cyclones making landfall in South China[J]. Climate Dynamics, 2020, 55(5-6):1059-1074.
[32] Li P H, Chih H T, Jia Y Y. Investigating the abrupt change of tropical cyclone (TC) activity in the Western North Pacific by using different TC genesis indices[J]. International Journal of Climatology, 2020, 40(14):5959-5972.
[33] Hu P, Huangfu J, Chen W, et al. Impacts of early/late South China Sea summer monsoon withdrawal on tropical cyclone genesis over the western North Pacific[J]. Climate Dynamics, 2020, 55(5-6):1507-1520.
[34] Gao S, Zhu L, Zhang W, Shen X. Impact of the Pacific Meridional Mode on landfalling tropical cyclone frequency in China[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730):2410-2420.
[35] Wu Q, Zhao J, Zhan R, et al. Revisiting the interannual impact of the Pacific Meridional Mode on tropical cyclone genesis frequency in the Western North Pacific[J]. Climate Dynamics, 2020. doi:10.1007/s00382-020-05515-9.
[36] Chowdhury R R, Kumar S P, Narvekar J, et al. Back-tobackoccurrenceoftropical cyclones in the Arabian Sea-during October-November 2015:Causes andresponses[J]. Journal of Geophysical Research-Oceans, 2020, 125(6). doi:10.1029/2019JC015836.
[37] Song J, Duan Y, Klotzbach P J. Revisiting the relationship between tropical cyclone size and intensity over the western North Pacific[J]. Geophysical Research Letters, 2020, 47(13). doi:10.1029/2020GL088217.
[38] Ruppert J H, Wing A A, Tang X D, et al. The critical role of cloud-infrared radiation feedback in tropical cyclone development[J]. Proceedings of the National Academy of Sciences, 2020, 117(45):27884-27892.
[39] Nystrom R G, Chen X, Zhang F, et al. Nonlinear impacts of surface exchange coefficient uncertainty on tropical cyclone intensity and air-sea interactions[J]. Geophysical Research Letters, 2020, 47(3). doi:10.1029/2019GL085783.
[40] Wu Q, Hong J,Ruan Z. Diurnal variations in tropical cyclone intensification[J]. Geophysical Research Letters, 2020, 47(23). doi:10.1029/2020GL090397.
[41] Cao X, Wu R G, Dai Y F, et al. A comparison of the effects of an upper-level anticyclone and a lower-level cyclone on tropical cyclogenesis in idealized simulations[J]. Journal of the Meteorological Society of Japan, 2020, 98(5):1005-1027.
[42] Liu L, Wang Y. Trends in landfalling tropical cyclone induced precipitation over China[J]. Journal of Climate, 2020, 33(6):2223-2235.
[43] Feng T, Ren F, Zhang D L, et al. Sideswiping tropical cyclones and their associated precipitation over China[J]. Advances in Atmospheric Sciences, 2020, 37(7):707-717.
[44] Lai Y, Li J, Gu X, et al. Greater flood risks in response to slowdown of tropical cyclones over the coast of China[J]. Proceedings of the National Academy of Sciences, 2020, 117(26):14751-14755.
[45] Chih C H, Wu C C. Exploratory analysis of upper ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the Western North Pacific[J]. Journal of Climate, 2020, 33(3):1031-1050.
[46] Bruneau N, Wang S, Toumi R. Long memory impact of ocean mesoscale temperature anomalies on tropical cyclone size[J]. Geophysical Research Letters, 2020, 47(6). doi:10.1029/2019GL086165.
[47] Ma Z. A study of the interaction between typhoon Francisco (2013) and a cold core eddy. Part I:Rapid weakening[J]. Journal of the Atmospheric Sciences, 2020, 77(1):355-377.
[48] Ma Z, Fei J, Huang X, et al. A study of the interaction between typhoon Francisco (2013) and a cold-core eddy. Part Ⅱ:Boundary layer structures[J]. Journal of the Atmospheric Sciences, 2020, 77(8):2865-2883.
[49] Anandh T S, Das B K, Kuttippurath J, et al. A coupled model analyses on the interaction between oceanic eddies and tropical cyclones over the Bay of Bengal[J]. Ocean Dynamics, 2020, 70(19):327-337.
[50] Mawren D, Hermes J, Reason C J C. Exceptional tropical cyclone Kenneth in the far northern Mozambique channel and ocean eddy influences[J]. Geophysical Research Letters, 2020, 47(16). doi:10.1029/2020GL088715.
[51] Lu Z, Wang G, Shang X. Strength and spatial structure of the perturbation induced by a tropical cyclone to the underlying eddies[J]. Journal of Geophysical Research:Oceans, 2020, 125(5). doi:10.1029/2020JC016097.
[52] Li M K, Zhang S Q, Wu L X, et al. An examination of the predictability of tropical cyclone genesis in high-resolution coupled models with dynamically downscaled coupled data assimilation initialization[J]. Advances in Atmospheric Sciences, 2020, 37:939-950.
[53] Qin X, Duan W, Xu H. Sensitivity to tendency perturbations of tropical cyclone short-range intensity forecasts generated by WRF[J]. Advances in Atmospheric Sciences, 2020, 37(3):291-306.
[54] Park J, Cha D H, Lee M K, et al. Impact of cloud microphysics schemes on tropical cyclone forecast over the western North Pacific[J]. Journal of Geophysical Research:Atmospheres, 2020, 125(18). doi:10.1029/2019JD032288.
[55] Li X, Peng X, Zhang Y. Investigation of the effect of the time step on the physics-dynamics interaction in CAM5 using an idealized tropical cyclone experiment[J]. Climate Dynamics, 2020, 55(3-4):665-680.
[56] Wang C, Wu L, Lu J, et al. Interannual variability of the basinwide translation speed of tropical cyclones in the western north Pacific[J]. Journal of Climate, 2020, 33(20):1-33.
[57] Dutheil C, Lengaigne M, Bador M, et al. Impact of projected sea surface temperature biases on tropical cyclones projections in the South Pacific[J]. Scientific Reports, 2020, 10:4838.
[58] 徐道生, 陈子通, 张艳霞, 等. 南海台风模式TRAMS 3.0的技术更新和评估结果[J]. 气象, 2020, 46(11):1474-1484.
[59] Fumin R, Ding C, Zhang D L, et al. A dynamical-statistical-analog ensemble forecast model:Theory and an application to heavy rainfall forecasts of landfalling tropical cyclones[J]. Monthly Weather Review, 2020, 148(4):1503-1517.
[60] Jia Z, Ren F, Zhang D, et al. An application of the LTP_DSEF model to heavy precipitation forecasts of landfalling tropical cyclones over China in 2018[J]. Science China Earth Sciences, 2019, 63:27-36.
[61] 中科院无人艇成功穿越台风眼[J]. 传感器世界, 2020, 26(8):44.
[62] Zou Z, Zhao D, Zhang J A, et al. The influence of swell on the atmospheric boundary layer under nonneutral conditions[J]. Journal of Physical Oceanography, 2018, 48(4):925-936.
[63] Wu L, Rutgersson A, Nilsson E. Atmospheric boundary layer turbulence closure scheme for wind-following swell conditions[J]. Journal of Atmospheric Sciences, 2017, 74(7):2363-2382.
[64] Jiang Q. Influence of swell on marine surface layer structure[J]. Journal of the Atmospheric Sciences, 2020, 77(5):1865-1885.
[65] Chen S, Qiao F, Xue Y, et al. Directional characteristic of wind stress vector under swell-dominated conditions[J]. Journal of Geophysical Research:Oceans, 2020, 125(7). doi:https://doi.org/10.1029/2020JC016352.
[66] Ayet A, Chapron B, Redelsperger J L, et al. On the impact of long wind-waves on near-surface turbulence and momentum fluxes[J]. Boundary-Layer Meteorology, 2020, 174:465-496.
[67] Powell M D, Vickery P J, Reinhold T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6929):279-283.
[68] Ewa J, Mitchell D A, Wang D W, et al. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone[J]. Science, 2007, 315(5819):17071709.
[69] Holthuijsen L H, Powell M D, Pietrzak J D. Wind and waves in extreme hurricanes[J]. Journal of Geophysical Research Oceans, 2012, 117(C9). doi:10.1029/2012JC007983.
[70] Zhang T, Song J B, Li S, et al. The effects of wind-driv-en waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean[J]. Acta Oceanologica Sinica, 2016, 35(11):79-85.
[71] Zhang T, Song J B. Effects of sea-surface waves and ocean spray on airsea momentum fluxes[J]. Advances in Atmospheric Sciences, 2018, 35(4):469-478.
[72] Chen Y J, Yu X P. Enhancement of wind stress evaluation method under storm conditions[J]. Climate Dynamics, 2016, 47(12):3833-3843.
[73] Ma H Y, Babanin A V, Qiao F L. Filed observations of sea spray under tropical cyclone Olwyn[J]. Ocean Dynamics, 2020, 70:1439-1448.
[74] Kirezci E, Young I R, Ranasinghe R, et al. Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century[J]. Scientific Reports, 2020, 10(1):11629.
[75] Cheikh M I, Momen M. The interacting effects of storm surge intensification and sea-level rise on coastal resiliency:a high-resolution turbulence resolving case study[J]. Environmental Research Communications, 2020, 2(11):115002.
[76] Toimil A, Camus P, Losada I J, et al. Climate changedriven coastal erosion modelling in temperate sandy beaches:methods and uncertainty treatment[J]. EarthScience Reviews, 2020, 202:103110.
[77] Contento A, Xu H, Gardoni P. Probabilistic formulation for storm surge predictions[J]. Structure and Infrastructure Engineering, 2020, 16(4):547-566.
[78] Tadesse M, Wahl T, Cid A. Data-driven modeling of global storm surges[J]. Frontiers in Marine Science, 2020, 7:260.
[79] Orton P M, Conticello F R, Cioffi F, et al. Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary[J]. Natural Hazards, 2020,102:729-757.
[80] Li A, Guan S, Mo D, et al. Modeling wave effects on storm surge from different typhoon intensities and sizes in the South China Sea[J]. Estuarine, Coastal and Shelf Science, 2020, 235:106551.
[81] Coppenolle R V, Temmerman S. Identifying global hot-spots where coastal wetland conservation can contribute to nature-based mitigation of coastal flood risks[J]. Global and Planetary Change, 2020, 187:103125.
[82] Feher L C, Osland M J, Anderson G H, et al. The longterm effects of hurricanes Wilma and Irma on soil elevation change in Everglades mangrove forests[J]. Ecosystems, 2020, 23:917-931.
[83] Radabaugh K R, Moyer R P, Chappel A R, et al. Mangrove damage, delayed mortality, and early recovery following Hurricane Irma at two landfall sites in southwest Florida, USA[J]. Estuaries and Coasts, 2020, 43:1104-1118.