专题:2020年科技热点回眸

2020年深海潜水器热点回眸

  • 崔维成 ,
  • 姜哲 ,
  • 王芳 ,
  • 李维 ,
  • 宋长会 ,
  • 宋婷婷 ,
  • 沙金余
展开
  • 1. 西湖大学工学院, 浙江省海岸带环境与资源研究重点实验室, 杭州 310024;
    2. 上海海洋大学海洋科学学院, 上海深渊科学工程技术研究中心, 上海 201306
崔维成,讲席教授,研究方向为深海探测技术,电子信箱:cuiweicheng@westlake.edu.cn

收稿日期: 2020-12-31

  修回日期: 2021-01-11

  网络出版日期: 2021-03-10

Hot spots of submersible development in 2020: An overview

  • CUI Weicheng ,
  • JIANG Zhe ,
  • WANG Fang ,
  • LI Wei ,
  • SONG Changhui ,
  • SONG Tingting ,
  • SHA Jinyu
Expand
  • 1. School of Engineering, Westlake University, Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, Hangzhou 310024, China;
    2. School of Marine Science, Shanghai Ocean University, Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai 201306, China

Received date: 2020-12-31

  Revised date: 2021-01-11

  Online published: 2021-03-10

摘要

2020年,国内外在深海装备研发领域取得显著的进展。围绕载人/无人潜水器的研发,重点介绍了2020年国际和国内的研究热点和亮点工作,分析了中国海洋技术所处的国际地位,并对中国深海潜水器领域未来的发展方向提出了建议。

本文引用格式

崔维成 , 姜哲 , 王芳 , 李维 , 宋长会 , 宋婷婷 , 沙金余 . 2020年深海潜水器热点回眸[J]. 科技导报, 2021 , 39(1) : 126 -136 . DOI: 10.3981/j.issn.1000-7857.2021.01.010

Abstract

Ocean is the most realistic space to solve conflicts among population, resources and environment. The development and utilization of marine resources and space are inseparable from various types of deep-sea equipment. In 2020 significant progress was made in the research and development of deep-sea equipment at home and abroad. Focusing on the research and development of manned/unmanned underwater vehicles, this paper introduces the international and domestic research hotspots and highlights in 2020, analyzes the international status of China's marine technology, and provides some suggestions on future development directions of China's deep-sea submersible field.

参考文献

[1] 崔维成, 郭威, 王芳, 等. 潜水器技术与应用[M]. 上海:上海科学技术出版社, 2018.
[2] Zhao B X, Wang F, Liu W, et al. Failure process analysis of frustum windows for deep-sea manned cabin[J/OL]. Ships and Offshore Structures, 2020,[2020-11-01]. https://doi.org/10.1080/17445302.2020.1861709.
[3] Wang F, Wang M Q, Wang W W, et al. Time-dependent axial displacement of PMMA frustums designed for deepsea manned cabin[J/OL]. Ships and Offshore Structures, 2020,[2020-11-03] https://doi.org/10.1080/17445302.20-20.1786235.
[4] Wang F, Cui W C. Recent developments on the unified fatigue life prediction method and its applications[J]. Journal of Marine Science and Engineering, 2020, 8:427.
[5] Zhang J, Wang X, Tang W X, et al. Non-linear collapse behavior of externally pressurized resin toroidal and cylindrical shells:Numerical and experimental studies[J/OL]. Ships and Offshore Structures, 2020,[2020-11-11]. https://doi.org/10.1080/17445302.2020.1745546.
[6] Zhang J, Dai M Q, Wang F, et al. Theoretical and experi-mental analyses of the free hydroforming of egg-shaped shell[J/OL]. Ships and Offshore Structures, 2020,[2020-11-14]. https://doi.org/10.1080/17445302.2020.1827637.
[7] 曹俊, 胡震, 刘涛, 等. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1):204-218.
[8] Kyo M, Hiyazaki E, Tsukioka S, et al. The sea trial of "KAIKO", the full ocean depth research ROV[C]//OCEANS 1995 MTS, Washington:IEEE, 1995:1991-1996.
[9] Itoh K, Inoue T, Tahara J, et al. Sea trials of the new ROV ABISMO to explore the deepest parts of oceans[C]//The Eighth ISOPE Pacific. Bangkok:Asia Offshore Mechanics Symposium. International Society of Offshore and Polar Engineers, 2008:10-14.
[10] Nakajoh H, Murashima T, Sugimoto F. Development of full depth fiber optic cable ROV (UROV11K) system[C]//OCEANS 2018 MTS. Charleston:IEEE, 2018:1-8.
[11] Zhilenkov A. The study of the process of the development of marine robotics[J]. Vibroengineering Procedia, 2016, 8:17-21.
[12] Klavesin. Russian harpsichord (Klavesin) large unmanned underwater vehicles carried by nuclear submarines[EB/OL]. (2019-03-30)[2020-12-21]. http://www.hisutton.com/Harpsichord_AUV.html.
[13] 周念福, 邢福, 渠继东. 大排量无人潜航器发展及关键技术[J]. 舰船科学技术, 2020, 42(7):1-6.
[14] Cephalopod. Russian ‘Cephalopod’ armed autonomous underwater vehicle (AUV) program[EB/OL]. (2018-07-27)[2020-12-21]. http://www.hisutton.com/Cephalopod.html.
[15] Vityaz. Vityaz-D deep-sea autonomous underwater vehicle[EB/OL]. (2020-09-03)[2020-12-21]. https://www.naval-technology.com/projects/vityaz-d/.
[16] McFarlane J. ROV-AUV hybrid for operating to 38000 feet[J]. Marine Technology Society Journal, 24(2):87-90.
[17] Bowen A D, Yoerger D R, Whitcomb L L, et al. Exploring the deepest depths:Preliminary design of a novel light-tethered hybrid ROV for global science in extreme environments[J]. Marine Technology Society Journal, 38(38):92-101.
[18] Fletcher B, Bowen A, Yoerger D R, et al. Journey to the challenger deep:50 years later with the nereus hybrid remotely operated vehicle[J]. Marine Technology Society Journal, 43(5):65-76.
[19] Wang B, Wu C, Ge T. Self-repairing control system for a hybrid underwater vehicle[J]. Advanced Materials Research, 2013, 834-836:1256-1262.
[20] Cui W C, Hu Y, Guo W. Chinese journey to the challenger deep:The development and first phase of sea trial of an 11000-m Rainbowfish ARV[J]. Marine Technology Society Journal, 2017, 51(3):23-35.
[21] 水下机器人研究室. 沈阳自动化所研制深海设备下潜深渊, 突破万米[EB/OL]. (2016-08-30)[2020-12-21]. http://www.sia.cas.cn/xwzx/tpxw/201608/t20160830_4657038.html.
[22] 刘晓艳, 杨绍琼."海燕" 万米级水下滑翔机再破工作潜深世界记录[EB/OL]. (2020-07-21)[2020-12-21]. http://www.tju.edu.cn/info/1026/3274.htm.
[23] Yang M, Yang S, Wang Y, et al. Optimization design of neutrally buoyant hull for underwater gliders[J]. Ocean Engineering, 2020, 209:107512.
[24] 张安通, 张华, 肖冬林, 等. 基于数值运动仿真的水下滑翔机浮力调节设计及试验研究[J]. 船舶力学, 2020, 24(9):1119-1126.
[25] 叶鹏程, 黄桥高. 大深度水下滑翔机总体设计[J]. 数字海洋与水下攻防, 2020, 3(3):223-229.
[26] Yang Y, Liu Y, Wang S, et al. Evaluation models and criteria of motion performance for underwater gliders[J]. Applied Ocean Research, 2020, 102:102286.
[27] Wang G, Yang Y, Wang S. Ocean thermal energy application technologies for unmanned underwater vehicles:A comprehensive review[J]. Applied Energy, 2020, 278, doi:10.1016/j.apenergy.2020.115752.
[28] Tenberg A, De Bovee F, Hall P, et al. Benthic chamber and profiling landers in oceanography-A review of design, technical solutions and functioning[J]. Progress in Oceanography, 2013, 35(3):253-294.
[29] Person R, Aoustin Y, Blandin J, et al. From bottom landers to observatory networks[J]. Annals of Geophysics, 2009, 49(2):581-593.
[30] Jamieson A J, Fujii T, Solan M, et al. HADEEP:Freefalling landers to the deepest places on Earth[J]. Marine Technology Society Journal, 2009, 43(5):151-160.
[31] 陈俊, 张奇峰, 李俊, 等. 深渊着陆器技术研究及马里亚纳海沟科考应用[J]. 海洋技术学报, 2017, 1:63-69.
[32] 中国"奋斗者" 号载人潜水器万米级海试总台随船记者直击"沧海" 号最新消息[EB/OL].[2020-11-13]. http://tv.cctv.com/2020/11/13/VIDErCcXI2pWsUy1KVvh654-X201113.shtml.
[33] 中国海洋大学物理海洋教育部重点实验室. 深海自持式剖面浮标[EB/OL]. (2020-01-19).[2020-11-30]. http://pol.ouc.edu.cn/chenzhaohui/2019/1229/c18375a28-0237/page.htm.
[34] 中国海洋大学党委统战部. 国家科技奖获得者吴立新团队专访[EB/OL]. (2019-01-09)[2020-11-03]. http://tzb.ouc.edu.cn/8d/fd/c10590a232957/page.psp.
[35] 王雷, 姚宝恒, 魏照宇, 等. 剖面浮标的分段浮力调节策略研究[J]. 船舶科学技术, 2020, 42(5):98-102.
[36] 赵艳飞, 李醒飞, 杨少波, 等. 剖面浮标"浮星" 可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6):1240-1248.
[37] 张博伟, 李醒飞, 李洪宇, 等. 基于ADRC深海剖面浮标定深控制[J]. 传感器与微系统, 2020, 39(10):100-103.
[38] Kohnen, W. Human exploration of the deep seas:Fifty years and the inspiration continues[J]. Marine Technology Society Journal, 2009, 43:42-62.
[39] Christ R D, Wernli R L. ROV Manual (2nd ed)[M]. Oxford, United Kingdom:Butterworth-Heinemann, 2014.
[40] Wynn R B, Huvenne V A I, Le Bas T P, et al. Autonomous underwater vehicles (AUVs):Their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352:451-468.
[41] Bowen A D, Yoerger D R, Whitcomb L L, et al. Exploring the deepest depths:Preliminary design of a novel light-tethered hybrid ROV for global science in extreme environments[J]. Marine Technology Society Journal, 2004, 38(2):92-101.
[42] Jamieson A J. The hadal zone:Life in the deepest oceans[M]. Cambridge, UK:Cambridge University Press, 2015.
[43] Cui W C, Hu Y, Guo W, Pan B B, et al. A Preliminary design of a movable laboratory for hadal trenches[J]. Methods in Oceanography, 2014, 9:1-16.
[44] Triantafyllou M S, Triantafyllou G S. An efficient swimming machine[J]. Scientific American-SCI AMER, 1995, 272(3):64-70.
[45] Triantafyllou M S, Barrett D S, Yue D K P. A new paradigm of propulsion and maneuvering for marine vehicles[J]. Transactions-Society of Naval Architects Marine Engineers, 1996, 104:81-100.
[46] Kim Y. Robotic Fish, the prince of ocean[J]. Dong-A Science, 2005, 8:54-59.
[47] Katzschmann R K, DelPreto J, MacCurdy R, et al. Exploration of underwater life with an acoustically controlled soft robotic fish[J]. Science Robotics, 2018, 3(16):eaar3449.
[48] Pan B B, Cui W C. Multidisciplinary design optimization and its application in deep manned submersible design[M]. Zhejiang:Zhejiang Science and Technology Publishing House Co., Ltd. and Springer Nature Singapore Pte Ltd., 2020.
[49] Song C H, Cui W C. Review of underwater ship hull cleaning technologies[J]. Journal of Marine Science and Application, 2020, 19:415-429.
[50] Qiu S M, Cui W C. An overview on aquatic unmanned aerial vehicles[J]. Ann Rev Resear, 2019, 5(3):555663.
[51] 刘相知, 崔维成. 水空两栖航行器的综述与分析[J].中国舰船研究, 2019, 14(S2):1-14.
[52] Cui W C. On a karmic management approach to push forward a large project[J]. Ann Soc Sci Manage Stud, 2019, 3(1):555604.
文章导航

/