[1] 崔维成, 郭威, 王芳, 等. 潜水器技术与应用[M]. 上海:上海科学技术出版社, 2018.
[2] Zhao B X, Wang F, Liu W, et al. Failure process analysis of frustum windows for deep-sea manned cabin[J/OL]. Ships and Offshore Structures, 2020,[2020-11-01]. https://doi.org/10.1080/17445302.2020.1861709.
[3] Wang F, Wang M Q, Wang W W, et al. Time-dependent axial displacement of PMMA frustums designed for deepsea manned cabin[J/OL]. Ships and Offshore Structures, 2020,[2020-11-03] https://doi.org/10.1080/17445302.20-20.1786235.
[4] Wang F, Cui W C. Recent developments on the unified fatigue life prediction method and its applications[J]. Journal of Marine Science and Engineering, 2020, 8:427.
[5] Zhang J, Wang X, Tang W X, et al. Non-linear collapse behavior of externally pressurized resin toroidal and cylindrical shells:Numerical and experimental studies[J/OL]. Ships and Offshore Structures, 2020,[2020-11-11]. https://doi.org/10.1080/17445302.2020.1745546.
[6] Zhang J, Dai M Q, Wang F, et al. Theoretical and experi-mental analyses of the free hydroforming of egg-shaped shell[J/OL]. Ships and Offshore Structures, 2020,[2020-11-14]. https://doi.org/10.1080/17445302.2020.1827637.
[7] 曹俊, 胡震, 刘涛, 等. 深海潜水器装备体系现状及发展分析[J]. 中国造船, 2020, 61(1):204-218.
[8] Kyo M, Hiyazaki E, Tsukioka S, et al. The sea trial of "KAIKO", the full ocean depth research ROV[C]//OCEANS 1995 MTS, Washington:IEEE, 1995:1991-1996.
[9] Itoh K, Inoue T, Tahara J, et al. Sea trials of the new ROV ABISMO to explore the deepest parts of oceans[C]//The Eighth ISOPE Pacific. Bangkok:Asia Offshore Mechanics Symposium. International Society of Offshore and Polar Engineers, 2008:10-14.
[10] Nakajoh H, Murashima T, Sugimoto F. Development of full depth fiber optic cable ROV (UROV11K) system[C]//OCEANS 2018 MTS. Charleston:IEEE, 2018:1-8.
[11] Zhilenkov A. The study of the process of the development of marine robotics[J]. Vibroengineering Procedia, 2016, 8:17-21.
[12] Klavesin. Russian harpsichord (Klavesin) large unmanned underwater vehicles carried by nuclear submarines[EB/OL]. (2019-03-30)[2020-12-21]. http://www.hisutton.com/Harpsichord_AUV.html.
[13] 周念福, 邢福, 渠继东. 大排量无人潜航器发展及关键技术[J]. 舰船科学技术, 2020, 42(7):1-6.
[14] Cephalopod. Russian ‘Cephalopod’ armed autonomous underwater vehicle (AUV) program[EB/OL]. (2018-07-27)[2020-12-21]. http://www.hisutton.com/Cephalopod.html.
[15] Vityaz. Vityaz-D deep-sea autonomous underwater vehicle[EB/OL]. (2020-09-03)[2020-12-21]. https://www.naval-technology.com/projects/vityaz-d/.
[16] McFarlane J. ROV-AUV hybrid for operating to 38000 feet[J]. Marine Technology Society Journal, 24(2):87-90.
[17] Bowen A D, Yoerger D R, Whitcomb L L, et al. Exploring the deepest depths:Preliminary design of a novel light-tethered hybrid ROV for global science in extreme environments[J]. Marine Technology Society Journal, 38(38):92-101.
[18] Fletcher B, Bowen A, Yoerger D R, et al. Journey to the challenger deep:50 years later with the nereus hybrid remotely operated vehicle[J]. Marine Technology Society Journal, 43(5):65-76.
[19] Wang B, Wu C, Ge T. Self-repairing control system for a hybrid underwater vehicle[J]. Advanced Materials Research, 2013, 834-836:1256-1262.
[20] Cui W C, Hu Y, Guo W. Chinese journey to the challenger deep:The development and first phase of sea trial of an 11000-m Rainbowfish ARV[J]. Marine Technology Society Journal, 2017, 51(3):23-35.
[21] 水下机器人研究室. 沈阳自动化所研制深海设备下潜深渊, 突破万米[EB/OL]. (2016-08-30)[2020-12-21]. http://www.sia.cas.cn/xwzx/tpxw/201608/t20160830_4657038.html.
[22] 刘晓艳, 杨绍琼."海燕" 万米级水下滑翔机再破工作潜深世界记录[EB/OL]. (2020-07-21)[2020-12-21]. http://www.tju.edu.cn/info/1026/3274.htm.
[23] Yang M, Yang S, Wang Y, et al. Optimization design of neutrally buoyant hull for underwater gliders[J]. Ocean Engineering, 2020, 209:107512.
[24] 张安通, 张华, 肖冬林, 等. 基于数值运动仿真的水下滑翔机浮力调节设计及试验研究[J]. 船舶力学, 2020, 24(9):1119-1126.
[25] 叶鹏程, 黄桥高. 大深度水下滑翔机总体设计[J]. 数字海洋与水下攻防, 2020, 3(3):223-229.
[26] Yang Y, Liu Y, Wang S, et al. Evaluation models and criteria of motion performance for underwater gliders[J]. Applied Ocean Research, 2020, 102:102286.
[27] Wang G, Yang Y, Wang S. Ocean thermal energy application technologies for unmanned underwater vehicles:A comprehensive review[J]. Applied Energy, 2020, 278, doi:10.1016/j.apenergy.2020.115752.
[28] Tenberg A, De Bovee F, Hall P, et al. Benthic chamber and profiling landers in oceanography-A review of design, technical solutions and functioning[J]. Progress in Oceanography, 2013, 35(3):253-294.
[29] Person R, Aoustin Y, Blandin J, et al. From bottom landers to observatory networks[J]. Annals of Geophysics, 2009, 49(2):581-593.
[30] Jamieson A J, Fujii T, Solan M, et al. HADEEP:Freefalling landers to the deepest places on Earth[J]. Marine Technology Society Journal, 2009, 43(5):151-160.
[31] 陈俊, 张奇峰, 李俊, 等. 深渊着陆器技术研究及马里亚纳海沟科考应用[J]. 海洋技术学报, 2017, 1:63-69.
[32] 中国"奋斗者" 号载人潜水器万米级海试总台随船记者直击"沧海" 号最新消息[EB/OL].[2020-11-13]. http://tv.cctv.com/2020/11/13/VIDErCcXI2pWsUy1KVvh654-X201113.shtml.
[33] 中国海洋大学物理海洋教育部重点实验室. 深海自持式剖面浮标[EB/OL]. (2020-01-19).[2020-11-30]. http://pol.ouc.edu.cn/chenzhaohui/2019/1229/c18375a28-0237/page.htm.
[34] 中国海洋大学党委统战部. 国家科技奖获得者吴立新团队专访[EB/OL]. (2019-01-09)[2020-11-03]. http://tzb.ouc.edu.cn/8d/fd/c10590a232957/page.psp.
[35] 王雷, 姚宝恒, 魏照宇, 等. 剖面浮标的分段浮力调节策略研究[J]. 船舶科学技术, 2020, 42(5):98-102.
[36] 赵艳飞, 李醒飞, 杨少波, 等. 剖面浮标"浮星" 可变浮力系统性能研究[J]. 浙江大学学报(工学版), 2020, 54(6):1240-1248.
[37] 张博伟, 李醒飞, 李洪宇, 等. 基于ADRC深海剖面浮标定深控制[J]. 传感器与微系统, 2020, 39(10):100-103.
[38] Kohnen, W. Human exploration of the deep seas:Fifty years and the inspiration continues[J]. Marine Technology Society Journal, 2009, 43:42-62.
[39] Christ R D, Wernli R L. ROV Manual (2nd ed)[M]. Oxford, United Kingdom:Butterworth-Heinemann, 2014.
[40] Wynn R B, Huvenne V A I, Le Bas T P, et al. Autonomous underwater vehicles (AUVs):Their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352:451-468.
[41] Bowen A D, Yoerger D R, Whitcomb L L, et al. Exploring the deepest depths:Preliminary design of a novel light-tethered hybrid ROV for global science in extreme environments[J]. Marine Technology Society Journal, 2004, 38(2):92-101.
[42] Jamieson A J. The hadal zone:Life in the deepest oceans[M]. Cambridge, UK:Cambridge University Press, 2015.
[43] Cui W C, Hu Y, Guo W, Pan B B, et al. A Preliminary design of a movable laboratory for hadal trenches[J]. Methods in Oceanography, 2014, 9:1-16.
[44] Triantafyllou M S, Triantafyllou G S. An efficient swimming machine[J]. Scientific American-SCI AMER, 1995, 272(3):64-70.
[45] Triantafyllou M S, Barrett D S, Yue D K P. A new paradigm of propulsion and maneuvering for marine vehicles[J]. Transactions-Society of Naval Architects Marine Engineers, 1996, 104:81-100.
[46] Kim Y. Robotic Fish, the prince of ocean[J]. Dong-A Science, 2005, 8:54-59.
[47] Katzschmann R K, DelPreto J, MacCurdy R, et al. Exploration of underwater life with an acoustically controlled soft robotic fish[J]. Science Robotics, 2018, 3(16):eaar3449.
[48] Pan B B, Cui W C. Multidisciplinary design optimization and its application in deep manned submersible design[M]. Zhejiang:Zhejiang Science and Technology Publishing House Co., Ltd. and Springer Nature Singapore Pte Ltd., 2020.
[49] Song C H, Cui W C. Review of underwater ship hull cleaning technologies[J]. Journal of Marine Science and Application, 2020, 19:415-429.
[50] Qiu S M, Cui W C. An overview on aquatic unmanned aerial vehicles[J]. Ann Rev Resear, 2019, 5(3):555663.
[51] 刘相知, 崔维成. 水空两栖航行器的综述与分析[J].中国舰船研究, 2019, 14(S2):1-14.
[52] Cui W C. On a karmic management approach to push forward a large project[J]. Ann Soc Sci Manage Stud, 2019, 3(1):555604.