专题:2020年科技热点回眸

2020年细胞力学热点回眸

  • 周冠林 ,
  • 王超 ,
  • 吴承伟 ,
  • 张伟
展开
  • 大连理工大学工程力学系生物与纳米力学实验室, 工业装备结构分析国家重点实验室, 大连 116024
周冠林,硕士研究生,研究方向为细胞力学性能调控与应用,电子信箱:77815021@qq.com

收稿日期: 2020-12-29

  修回日期: 2021-01-07

  网络出版日期: 2021-03-10

基金资助

国家重点研发计划项目(2018YFA0704103,2018YFA0704104);辽宁省自然科学基金项目(2019-KF-02-01);中央高校基本科研业务费专项(DUT20YG129)

Review of research focuses on cell mechanics in 2020

  • ZHOU Guanlin ,
  • WANG Chao ,
  • WU Chengwei ,
  • Zhang Wei
Expand
  • State Key Laboratory of Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Laboratory of Biology and Nanomechanics, Dalian University of Technology, Dalian 116024, China

Received date: 2020-12-29

  Revised date: 2021-01-07

  Online published: 2021-03-10

摘要

概述了2020年细胞力学研究的热点和进展,探讨了细胞膜表面张力、细胞粘附力、细胞弹性模量、细胞与纳米颗粒相对刚度等对细胞生物学行为的影响及其在疾病诊疗中的应用。

本文引用格式

周冠林 , 王超 , 吴承伟 , 张伟 . 2020年细胞力学热点回眸[J]. 科技导报, 2021 , 39(1) : 137 -143 . DOI: 10.3981/j.issn.1000-7857.2021.01.011

Abstract

This article briefly summarizes the hotspots and advances of cell mechanics research in 2020. The effects of cell membrane surface tension, cell adhesion, cell elastic modulus, and relative stiffness of cell to nanoparticles on biological behaviors of cells and its potential applications are discussed.

参考文献

[1] 龙勉, 季葆华. 细胞分子生物力学[M]. 上海:上海交通大学出版社, 2018:1-5.
[2] Chaudhuri O, Cooper-White J, Janmey P A, et al. Effects of extracellular matrix viscoelasticity on cellular behaviour[J]. Nature, 2020, 584(7822):535-546.
[3] Hou Y, Yu L X, Xie W Y, et al. Surface roughness and substrate stiffness synergize to drive cellular mechanoresponse[J]. Nano Letters, 2020, 20(1):748-757.
[4] Belly H D, Stubb A, Yanagida A, et al. Membrane tension gates erk-mediated regulation of pluripotent cell fate[J]. Cell Stem Cell, 2021, 28:1-12.
[5] Bergert M, Lembo S, Sharma S, et al. Cell surface mechanics gate embryonic stem cell differentiation[J]. Cell Stem Cell, 2021, 28:1-8.
[6] Tandja N, Bersi M R, Baillargeon S M, et al. Precise tuning of cortical contractility regulates cell shape during cytokinesis[J]. Cell Reports, 2020, 31(1):107477.
[7] Shuai C J, Yang W J, He C X, et al. A magnetic microenvironment in scaffolds for stimulating bone regeneration[J]. Materials & Design, 2020, 185:108275.
[8] Shuai C J, Cheng Y, Yang W J, et al. Magnetically actuated bone scaffold:Microstructure, cell response and osteogenesis[J]. Composites Part B:Engineering, 2020, 192:107986.
[9] 谢曼, 干勇, 王慧. 面向2035的新材料强国战略研究[J]. 中国工程科学, 2020, 22(5):1-9.
[10] Guimarães C F, Gasperini L, Marques A P, et al. The stiffness of living tissues and its implications for tissue engineering[J]. Nature Reviews Materials, 2020, 5:351-370.
[11] Kwon S, Yang W, Moon D, et al. Comparison of cancer cell elasticity by cell type[J]. Journal of Cancer, 2020, 11(18):5403-5412.
[12] Solon J, Levental L, Sengupta K, et al. Fibroblast adaptation and stiffness matching to soft elastic substrates[J]. Biophysical Journal, 2007, 9(12):4453-4461.
[13] Rheinlaender J, Dimitracopoulos A, Wallmeyer B, et al. Cortical cell stiffness is independent of substrate mechanics[J]. Nature Materials, 2020, 19:1019-1025.
[14] Ombid R J L, Oyong G G, Cabrera E C, et al. In-vitro study of monocytic THP-1 leukemia cell membrane elasticity with a single-cell microfluidic-assisted optical trapping system[J]. Biomedical Optics Express, 2020, 11(10):6027-6037.
[15] Yu X G, Ding S W, Yang R P, et al. Research progress on magnetic nanoparticles for magnetic induction hyperthermia of malignant tumor[J]. Ceramics International, 2020, https://doi.org/10.1016/j.ceramint.2020.11.049
[16] Hui Y, Yi X, Wibowo D, et al. Nanoparticle elasticity regulates phagocytosis and cancer cell uptake[J]. Science Advances, 2020, 6(16):eaaz4316.
[17] Zheng Y X, Xing L Y, Chen L Q, et al. Tailored elasticity combined with biomimetic surface promotes nanoparticle transcytosis to overcome mucosal epithelial barrier[J]. Biomaterials, 2020, 262:120323.
文章导航

/