[1] Zhu N, Zhang D, China Novel Coronavirus Investigating and Research Team, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. New England Journal of Medicine, 2020, 382(8):727-733.
[2] Coronaviridae Study Group of the International Committee on Taxonomy of Viruses, Gorbalenya A E, Baker S C, et al. The species severe acute respiratory syndrome-related coronavirus:Classifying 2019-nCoV and naming it SARS-CoV-2[J]. Nature Microbiology, 2020, 5:536-544.
[3] World Health Organization. WHO coronavirus disease (COVID-19) dashboard[EB/OL]. (2019-03-11)[2020-12-21]. https://covid19.who.int/.
[4] Estola T. Coronaviruses, a new group of animal RNA viruses[J]. Avian Disease, 1970, 14(2):330-336.
[5] Beach J R, Schalm O W. A filtrable virus distinct from that of laryngotracheitis:the cause of a respiratory disease of chicks[J]. Poultry Science, 1936, 15:199-206.
[6] Lalchhandama K. The chronicles of coronaviruses:The bronchitis, the hepatitis and the common cold[J]. Science Vision, 2020, 20(1):43-53.
[7] Kendall E J, Bynoe M L, Tyrrell D A. Virus isolations from common colds occurring in a residential school[J]. British Medical Journal, 1962, 2(5297):82-86.
[8] Hamre D, Procknow J J. A new virus isolated from the human respiratory tract[J]. Proceedings of the Society for Experimental Biology and Medicine, 1966, 121(1):190-193.
[9] Berry D M, Cruickshank J G, Chu H P, et al. The structure of infectious bronchitis virus[J]. Virology, 1964, 23:403-407.
[10] Almeida J D, Tyrrell D A. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture[J]. Journal of General Virology, 1967, 1(2):175-178.
[11] McIntosh K, Dees J H, Becker W B, et al. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 57(4):933-940.
[12] Almeida J D, Berry D M, Cunningham C H, et al. Virology:Coronaviruses[J]. Nature, 1968, 220(5168):650.
[13] Cavanagh D. Severe acute respiratory syndrome vaccine development:Experiences of vaccination against avian infectious bronchitis coronavirus[J]. Avian Pathology, 2003, 32:567-582.
[14] Chan-Yeung M, Xu R H. SARS:Epidemiology[J]. Respirology, 2003, 8(S1):9-14.
[15] van der Hoek L, Pyrc K, Jebbink M F, et al. Identification of a new human coronavirus[J]. Nature Medicine, 2004, 10(4):368-373.
[16] Woo P C, Lau S K, Chu C M, et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia[J]. Journal of Virology, 2005, 79(2):884-895.
[17] World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV)[EB/OL]. (2019-03-11)[2020-12-21]. https://www.who.int/health-topics/middleeast-respiratory-syndrome-coronavirus-mers.
[18] Neiderud C J. How urbanization affects the epidemiology of emerging infectious diseases[J]. Infection Ecology & Epidemiology, 2015, 5:27060.
[19] Jones K, Patel N, Levy M et al. Global trends in emerging infectious diseases[J]. Nature, 2008, 451:990-993.
[20] Hu B, Zeng L P, Yang X L, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus[J]. PLoS Pathogens, 2017, 13(11):e1006698.
[21] Müller M A, Corman V M, Jores J, et al. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997[J]. Emerging Infectious Diseases, 2014, 20(12):2093-2095.
[22] King A M Q, Adams M J, Carstens E B, et al. Virus taxonomy:classification and nomenclature of viruses:ninth report of the International Committee on Taxonomy of Viruses[R]. London:the International Committee on Taxonomy of Viruses, 2011.
[23] Brian D A, Baric R S. Coronavirus genome structure and replication[J]. Current Topics in Microbiology and Immunology, 2005, 287:1-30.
[24] Ziebuhr J. Molecular biology of severe acute respiratory syndrome coronavirus[J]. Current Opinion in Microbiology, 2004, 7(4):412-419.
[25] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. The Lancet, 2020, 395(10223):497-506.
[26] Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798):270-273.
[27] Li W, Moore M, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426:450-454.
[28] Mossel E C, Wang J, Jeffers S, et al. SARS-CoV replicates in primary human alveolar type Ⅱ cell cultures but not in type I-like cells[J]. Virology, 2008, 372(1):127-135.
[29] Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor[J]. Nature, 2020, 581:215-220.
[30] Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2[J]. Nature, 2020, 581:221-224.
[31] Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367:1444-1448.
[32] Li F, Li W, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor[J]. Science, 2005, 309:1864-1868.
[33] Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells[J]. Signal Transduction and Targeted Therapy, 2020, 5:283.
[34] Chen Y, Liu Q, Guo D. Emerging coronaviruses:Genome structure, replication, and pathogenesis[J]. Journal of Medical Virology, 2020, 92(4):418-423.
[35] Wrapp D, Wang N, Corbett K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483):1260-1263.
[36] Pallesen J, Wang N, Corbett K S, et al. Immunogenicity and structures of a rationally designed prefusion MERSCoV spike antigen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35):7348-7357.
[37] Cai Y, Zhang J, Xiao T, et al. Distinct conformational states of SARS-CoV-2 spike protein[J]. Science, 2020, 369(6511):1586-1592.
[38] Walls A C, Park Y J, Tortorici M A, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2):281-292.
[39] Sternberg A, Naujokat C. Structural features of coronavirus SARS-CoV-2 spike protein:Targets for vaccination[J]. Life Science, 2020, 257:118056.
[40] Fan X, Cao D, Kong L, et al. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein[J]. Nature Communications,2020, 11(1):3618.
[41] Walls A C, Xiong X, Park Y J, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion[J]. Cell, 2019, 176:1026-1039.
[42] Yao H, Song Y, Chen Y, et al. Molecular architecture of the SARS-CoV-2 virus[J]. Cell, 2020, 183(3):730-738.
[43] Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions[J]. Nature, 2020, 588:498-502.
[44] Liu C, Mendonça L, Yang Y, et al. The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by Cryo-EM and Cryo-ET[J]. Structure, 2020, 28(11):1218-1224.
[45] Yang H, Yang M, Ding Y, et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23):13190-13195.
[46] Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARSCoV-2 and discovery of its inhibitors[J]. Nature, 2020, 582:289-293.
[47] Gao Y, Yan L, Huang Y, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus[J]. Science, 2020, 368(6492):779-782.
[48] Yan L, Zhang Y, Ge J. et al. Architecture of a SARSCoV-2 mini replication and transcription complex[J]. Nature Communications, 2020, 11:5874.
[49] Wang Q, Wu J, Wang H, et al. Structural basis for RNA replication by the SARS-CoV-2 polymerase[J]. Cell, 2020, 182(2):417-428.
[50] The Pharmaceutical Research and Manufacturers of America. Biopharmaceutical R&D:The process behind new medicines[R]. Washington DC:PhRMA, 2015.
[51] Beigel J H, Tomashek K M, Dodd L E. Remdesivir for the treatment of Covid-19-Final report[J]. New England Journal of Medicine, 2020, 383:1813-1826.
[52] WHO Solidarity Trial Consortium. Repurposed antiviral drugs for Covid-19-Interim WHO solidarity trial results[J]. New England Journal of Medicine, 2020, doi:10.1056/NEJMoa2023184.
[53] Omrani A S, Saad M M, Baig K, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection:a retrospective cohort study[J]. The Lancet Infectious Diseases, 2014, 14:1090-1095.
[54] Khalili J S, Zhu H, Mak N S A, et al. Novel coronavirus treatment with ribavirin:Groundwork for an evaluation concerning COVID-19[J]. Journal of Medical Virology, 2020, 92(7):740-746.
[55] Tong S, Su Y, Yu Y, et al. Ribavirin therapy for severe COVID-19:A retrospective cohort study[J]. International Journal of Antimicrobial Agents, 2020, 56(3):106114.
[56] Kaptein S J F, Jacobs S, Langendries L, et al. Favipiravir at high doses has potent antiviral activity in SARSCoV-2-infected hamsters, whereas hydroxychloroquine lacks activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(43):26955-26965.
[57] Shrestha D B, Budhathoki P, Khadka S, et al. Favipiravir versus other antiviral or standard of care for COVID-19 treatment:A rapid systematic review and meta-analysis[J]. Virology Journal, 2020, 17:141.
[58] Muralidharan N, Sakthivel R, Velmurugan D, et al. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARSCoV-2 protease against COVID-19[J]. Journal of Biomolecular Structure & Dynamics, 2020, 16:1-6.
[59] Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19[J]. New England Journal of Medicine, 2020, 382(19):1787-1799.
[60] Jin Z, Zhao Y, Sun Y, et al. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur[J]. Nature Structural & Molecular Biology, 2020, 27:529-532.
[61] Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro[J]. Cell Research, 2020, 30(3):269-271.
[62] Sun J, Chen Y, Fan X, et al. Advances in the use of chloroquine and hydroxychloroquine for the treatment of COVID-19[J]. Postgraduate Medicine, 2020, 132(7):604-613.
[63] Pillaiyar T, Manickam M, Namasivayam V, et al. An overview of severe acute respiratory syndrome-coronavirus(SARS-CoV) 3CL protease inhibitors:peptidomimetics and small molecule chemotherapy[J]. Journal of Medicine Chemistry, 2016, 59(14):6595-6628.
[64] Liang R, Wang L, Zhang N, et al. Development of smallmolecule MERS-CoV inhibitors[J]. Viruses, 2018, 10(12):721.
[65] Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target[J]. Bioorganic & Medicinal Chemistry Letters, 2020, 30(17):127377.
[66] Zhang L, Lin D, Sun X, et al. Crystal structure of SARSCoV-2 main protease provides a basis for design of improved α -ketoamide inhibitors[J]. Science, 2020, 368(6489):409-412.
[67] Yang H, Xie W, Xue X, et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases[J]. PLoS Biology, 2005, 3(10):e324.
[68] Dai W, Zhang B, Su H, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease[J]. Science, 2020, 368(6497):1331-1335.
[69] Walls A C, Xiong X, Park Y J, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion[J]. Cell, 2019, 176(5):1026-1039.
[70] Berry J D, Hay K, Rini J M, et al. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology[J]. mAbs, 2010, 2(1):53-66.
[71] Ter Meulen J, van den Brink E N, Poon L L M, et al. Human monoclonal antibody combination against SARS coronavirus:synergy and coverage of escape mutants[J]. PLoS Medicine, 2006, 3(7):e237.
[72] Prabakaran P, Gan J, Feng Y, et al. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody[J]. Journal of Biological Chemistry, 2006, 281(23):15829-15836.
[73] Zhu Z, Chakraborti S, He Y, et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(29):12123-12128.
[74] Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection[J]. Nature Communications, 2020, 11:2251.
[75] Barnes C O, Jette C A, Abernathy M E, et al. SARSCoV-2 neutralizing antibody structures inform therapeutic strategies[J]. Nature, 2020, 588:682-687
[76] Huo J, Le Bas A, Ruza R R, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2[J]. Nature Structural & Molecular Biology, 2020, 27:846-854.
[77] Monteil V, Kwon H, Prado P, et al. Inhibition of SARSCoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2[J]. Cell, 2020, 181:905-913.
[78] Chan K K, Dorosky D, Sharma P, et al. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2[J]. Science, 2020, 369:1261-1265.
[79] Cao L, Goreshnik I, Coventry B, et al. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors[J]. Science, 2020, 370(6515):426-431.
[80] Shi X J, Li Y, Yan L, et al. Neutralizing antibodies targeting SARS-CoV-2 spike protein[J]. Stem Cell Research, 2020, 50:102125.
[81] Zhu Y, Yu D, Yan H, et al. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity[J]. Journal of Virology, 2020, 94(14):e00635-20.
[82] Lu L, Liu Q, Zhu Y, et al. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor[J]. Nature Communications, 2014, 5:3067.
[83] Xia S, Yan L, Xu W, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike[J]. Science Advances, 2019, 5(4):eaav4580.
[84] Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2(previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion[J]. Cell Research, 2020, 30(4):343-355.
[85] Krammer, F. SARS-CoV-2 vaccines in development[J]. Nature, 2020, 586:516-527.
[86] World Health Organization. DRAFT landscape of COVID-19 candidate vaccines[R]. Geneva:WHO, 2020.
[87] Tseng C T, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus[J]. PLoS ONE, 2012, 7:e35421.
[88] Houser K V, Broadbent A J, Gretebeck L, et al. Enhanced inflammation in New Zealand white rabbits when MERS-CoV reinfection occurs in the absence of neutralizing antibody[J]. PLoS Pathogens, 2017, 13(8):e1006565.
[89] Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2[J]. Science, 2020, 369(6499):77-81.
[90] Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes:Interim analysis of 2 randomized clinical trials[J]. The Journal of the American Medical Association, 2020, 324(10):951-960.
[91] Wang H, Zhang Y, Huang B, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2[J]. Cell, 2020, 182(3):713-721.
[92] Palacios R, Patiño E G, de Oliveira Piorelli R, et al. Double-blind, randomized, placebo-controlled phase Ⅲ clinical trial to evaluate the efficacy and safety of treating healthcare professionals with the adsorbed COVID-19(Inactivated) vaccine manufactured by sinovac-PROFISCOV:A structured summary of a study protocol for a randomised controlled trial[J]. Trials, 2020, 21(1):853.
[93] Amanat F, Stadlbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans[J]. Nature Medicine, 2020, 26(7):1033-1036.
[94] Liu L, Wang P, Nair M S, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike[J]. Nature, 2020, 584(7821):450-456.
[95] Kirchdoerfer R N, Wang N, Pallesen J, et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis[J]. Scientific Reports, 2018, 8(1):15701.
[96] Hsieh C L, Goldsmith J A, Schaub J M, et al. Structurebased design of prefusion-stabilized SARS-CoV-2 spikes[J]. Science, 2020, 369(6510):1501-1505.
[97] Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine[J]. New England Journal of Medicine, 2020, 383(24):2320-2332.
[98] Moderna Inc. Moderna announces primary efficacy analysis in phase 3 COVE study for its COVID-19 vaccine candidate and filing today with U.S. FDA for emergency use authorization[EB/OL]. (2020-11-30)[2020-12-21]. https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-primary-efficacyanalysis-phase-3-cove-study.
[99] Pfizer Inc. Pfizer and biontech conclude phase 3 study of COVID-19 vaccine candidate, meeting all primary efficacy endpoints[EB/OL]. (2020-11-18)[2020-12-21]. https://www.pfizer.com/news/press-release/press-releasedetail/pfizer-and-biontech-conclude-phase-3-studyCOVID-19-vaccine.
[100] Marzi A, Robertson S J, Haddock E, et al. Ebola Vaccine. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain[J]. Science, 2015, 349(6249):739-42.
[101] Zhu F C, Guan X H, Li Y H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older:a randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet, 2020, 396(10249):479-488.