专题:2020年科技热点回眸

2020年光学超材料热点回眸

  • 孙竞博 ,
  • 文永正 ,
  • 王陈 ,
  • 赵世强 ,
  • 王菲镂 ,
  • 周济
展开
  • 清华大学材料学院, 北京 100084
孙竞博,副教授,研究方向为光学超材料,电子信箱:jingbosun@tsinghua.edu.cn

收稿日期: 2020-12-23

  修回日期: 2021-01-05

  网络出版日期: 2021-03-10

基金资助

国家自然科学基金委员会基础科学中心项目(51788104)

Memorable sounds in the optical metamaterial in 2020

  • SUN Jingbo ,
  • WEN Yongzheng ,
  • WANG Chen ,
  • ZHAO Shiqiang ,
  • WANG Feilou ,
  • ZHOU Ji
Expand
  • School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Received date: 2020-12-23

  Revised date: 2021-01-05

  Online published: 2021-03-10

摘要

光学超材料一直是超材料学科中的重要组成部分之一,是超材料在信息科学领域中应用的重要体现。2020年,光学超材料领域的研究涌现出了一大批非常优秀的科技成果。围绕非线性光学超材料、人工智能超材料与光学超表面等方面回顾了光学超材料在2020年的研究热点。

本文引用格式

孙竞博 , 文永正 , 王陈 , 赵世强 , 王菲镂 , 周济 . 2020年光学超材料热点回眸[J]. 科技导报, 2021 , 39(1) : 192 -200 . DOI: 10.3981/j.issn.1000-7857.2021.01.016

Abstract

As a new concept originated in early 21st century, metamaterials have since attracted extensive attention of both scientific research and industry. Different from traditional materials, the properties of the metamaterials are created by artificial structures instead of intrinsic compositions of the materials, thus they exhibit many extrondinary properties beyond nature. Optical materials is one of the most important parts in this field, playing a significant role in information technology. In 2020, there were a lot of excellent research works in the optical metamaterials field. Here, we give a comprehensive review based on the works in nonlinear optical metamaterials, artificial intelligence metamaterials, and optical metasurface.

参考文献

[1] Klein M W, Enkrich C, Wegener M, et al. Second-harmonic generation from magnetic metamaterials[J]. Science, 2006, 313(5786):502-504.
[2] Wen Y, Zhou J. Artificial nonlinearity generated from electromagneticcoupling metamolecule[J]. Physical Review Letters, 2017, 118(16):167401.
[3] Hentschel M, Utikal T, Giessen H, et al. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas[J]. Nano Letters, 2012, 12(7):3778-3782.
[4] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 2016, 7(1):1-7.
[5] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography[J]. Nature Communications, 2016, 7(1):1-7.
[6] Koshelev K, Kruk S, Melik-Gaykazyan E, et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 2020, 367(6475):288-292.
[7] Jiang B, Hao Z, Ji Y, et al. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe[J]. Light:Science & Applications, 2020, doi:10.1038/s41377-020-0304-1
[8] Lu X, Moille G, Rao A, et al. Efficient photoinduced second-harmonic generation in silicon nitride photonics[J]. Nature Photonics, 2020, doi:10.1038/s41566-020-00708-4.
[9] Huang C, Zhang C, Xiao S, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481):1018-1021.
[10] Zhang T, Che Y, Chen K, et al. Anapole mediated giant photothermal nonlinearity in nanostructured silicon[J]. Nature Communications, 2020, 11(1):3027.
[11] Shen B, Chang L, Liu J, et al. Integrated turnkey soliton microcombs[J]. Nature, 2020, 582(7812):365-369.
[12] Kital K, Guo J, Ju S, et al. Designing metamaterials with quantum annealing and factorization machines[J]. Physical Review Research, 2020, 2(1):013319.
[13] Ashalley E, Acheampong K, Besteiro L V, et al. Multitask deep-learning-based design of chiral plasmonic metamaterials[J]. Photonics Research, 2020, 8(7):1213-1225.
[14] Harper E S, Coyle E J, Vernon J P, et al. Inverse design of broadband highly reflective metasurfaces using neural networks[J]. Physical Review B, 2020, 101(19):195104.
[15] Sheverdin A, Monticone F, Valagiannopoulos C. Photonic inverse design with neural networks:The case of invisibility in the visible[J]. Physical Review Applied, 2020, 14(2):024054.
[16] Qian C, Zheng B, Shen Y, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6):383-390.
[17] Ma W, Liu Z, Kudyshev Z A, et al. Deep learning for the design of photonic structures[J]. Nature Photonics, 2020, 1-14.
[18] Zhou Y, Zheng H, Kravchenko I I, et al. Flat optics for image differentiation[J]. Nature Photonics, 2020, 14(5):316-323.
[19] Del Hougne P, Imani M F, Diebold A V, et al. Learned integrated sensing pipeline:Reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network[J]. Advanced Science, 2020, 7(3):1901913.
[20] Zangeneh-Nejad F, Sounas D L, ALù A, et al. Analogue computing with metamaterials[J]. Nature Reviews Materials, 2020, 10:1-19.
[21] Li L, Liu Z, Ren X, et al. Metalens-array-based highdimensional and multiphoton quantum source[J]. Science, 2020, 368(6498):1487-1490.
[22] Park J, Jeong B G, Kim S I, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 2020, 1-8.
[23] Li J, Yu P, Zhang S, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications, 2020, 11(1):3574.
[24] Chen C, Wang Y, Jiang M, et al. Parallel polarization illumination with a multifocal axicon metalens for improved polarization imaging[J]. Nano Letters, 2020, 20(7):5428-5434.
[25] Hu Y, Li L, Wang Y, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 2019, 20(2):994-1002.
[26] Ren H, Fang X, Jang J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11):948-955.
[27] Sun W, Liu Y, Qu G, et al. Lead halide perovskite vortex microlasers[J]. Nature Communications, 2020, 11(1):1-7.
[28] Zhu L, Liu X, Sain B, et al. A dielectric metasurface optical chip for the generation of cold atoms[J]. Science Advances, 2020, 6(31):eabb6667.
[29] Zhang C, Divitt S, Fan Q, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light:Science & Applications, 2020, 9(1):1-10.
[30] Lin H, Xu Z Q, Cao G, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light:Science & Applications, 2020, 9(1):1-11.
文章导航

/