专题:2020年科技热点回眸

2020年太赫兹科学与技术热点回眸

  • 司黎明 ,
  • 徐浩阳 ,
  • 董琳 ,
  • 吕昕
展开
  • 1. 北京理工大学信息与电子实验室, 北京 100081;
    2. 毫米波与太赫兹技术北京市重点实验室, 北京 100081
司黎明,副教授,研究方向为电磁场与微波技术,电子信箱:lms@bit.edu.cn

收稿日期: 2020-12-29

  修回日期: 2021-01-05

  网络出版日期: 2021-03-10

基金资助

国家重点研发计划项目(2018YFF0212103);国家自然科学基金项目(61527805);高等学校学科研创新引智计划项目(B14010);北京理工大学创新研究基金项目(3050012211803);北京理工大学国际合作交流项目(BITBLR2020014)

Terahertz technology hot spots in 2020: A review

  • SI Liming ,
  • XU Haoyang ,
  • DONG Lin ,
  • LV Xin
Expand
  • 1. Laboratory of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China;
    2. Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, Beijing 100081, China

Received date: 2020-12-29

  Revised date: 2021-01-05

  Online published: 2021-03-10

摘要

2020年太赫兹科学与技术在辐射源、探测器、5G/6G通信、医疗、农业、安检与军事等领域取得了一系列突破性发展,为太赫兹的工程应用和产业化起到了积极的推动作用。对2020年太赫兹科学与技术关键热点,包括6G通信、太赫兹医疗、太赫兹军事应用等进行了概述,并展望了其未来发展。

本文引用格式

司黎明 , 徐浩阳 , 董琳 , 吕昕 . 2020年太赫兹科学与技术热点回眸[J]. 科技导报, 2021 , 39(1) : 201 -211 . DOI: 10.3981/j.issn.1000-7857.2021.01.017

Abstract

In 2020, terahertz science and technology made a series of breakthroughs in the fields of radiation source, detector, 5G/6G communication, medical, agriculture, security inspection, military, etc. These achievements are playing a positive role in promoting engineering application and industrialization of terahertz. In this paper, key hotspots of terahertz science and technology, including 6G communication, terahertz medical erahertz military application, are summarized and their development trends are prospected.

参考文献

[1] Vaswani C, Mootz M, Sundahl C, et al. Terahertz secondharmonic generation from lightwave acceleration of symmetry-breaking nonlinear supercurrents[J]. Physical Review Letters, 2020, 124(20):207003.
[2] Nakamura S, Katsumi K, Terai H, et al. Nonreciprocal terahertz second-harmonic generation in superconducting NbN under supercurrent injection[J]. Physical Review Letters, 2020, 125(9):097004.
[3] Liao G Q, Liu H, Scott G G, et al. Towards terawatt-scale spectrally tunable terahertz pulses via relativistic laserfoil interactions[J]. Physical Review X, 2020, 10(3):031062.
[4] Khalatpour A, Paulsen A K, Deimert C, et al. High-power portable terahertz laser systems[J]. Nature Photonics, 2020, 1:1-5.
[5] Salamin Y, Jafari A, Matioli E, et al. Nanoplasma-enabled picosecond switches for ultrafast electronics[J]. Nature, 2020, 579(7800):534-539.
[6] Salamin Y, Benea-Chelmus I C, Fedoryshyn Y, et al. Compact and ultra-efficient broadband plasmonic terahertz field detector[J]. Nature Communications, 2019, 10(1):5550.
[7] Peng K, Jevtics D, Zhang F, et al. Three-dimensional cross-nanowire networks recover full terahertz state[J]. Science, 2020, 368(6490):510-513.
[8] Kutas M, Haase B, Bickert P, et al. Terahertz quantum sensing[J]. Science Advances, 2020, 6(11):1-8
[9] Harter T, C. Füllner, Kemal J N, et al. Generalized Kramers-Kronig receiver for coherent terahertz communications[J]. Nature Photonics, 2020, 14(10):1-6.
[10] Abadal S, Han C, Jornet J M. Wave propagation and channel modeling in chip-scale wireless communications:A survey from millimeter-wave to terahertz and optics[J]. IEEE Access, 2020, 8:278-293.
[11] Yang Y, Yamagami Y, Yu X, et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 2020, 14(7):446-451.
[12] Ghasempour Y, Shrestha R, Charous A, et al. Singleshot link discovery for terahertz wireless networks[J]. Nature Communications, 2020, 11(1):1-6.
[13] Ma X Y, Chen Z, Chen W, et al. Intelligent reflecting surface enhanced indoor terahertz communication systems[J]. Nano Communication Networks, 2020, 24:100284.
[14] Qiao J, Alouini M S. Secure transmission for intelligent reflecting surface-assisted mm wave and terahertz systems[J]. IEEE Wireless Communication Letters, 2020, 9(10):1743-1747.
[15] Du J, Yu F R, Lu G, et al. MEC-assisted immersive VR video streaming over terahertz wireless networks:A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020, 7(10):9517-9529.
[16] Yan L, Han C, Yuan J. A Dynamic array-of-subarrays architecture and hybrid precoding algorithms for terahertz wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9):2041-2056.
[17] Zhang H, Zhang, Liu W, et al. Energy efficient user clustering and hybrid precoding for terahertz MIMO-NOMA systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(9):2074-2085.
[18] Bai Z, Liu Y, Kong R, et al. Near-field terahertz sensing of hela cells and pseudomonas based on monolithic integrated metamaterials with a spintronic terahertz emitter[J]. ACS Applied Materials & Interfaces, 2020, 12(32):35895-35902.
[19] Xiao D, Zhu M, Wang Q, et al. A flexible and ultrabroadband terahertz wave absorber based on graphenevertically aligned carbon nanotube hybrids[J]. Journal of Materials Chemistry C, 2020, 8(21):7244-7252.
[20] Liu W, Song Z. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon, 2020, doi:10.1016/j.carbon.2020.12.001.
[21] Grigorev R, Kuzikova A, Demchenko P, et al. Investigation of fresh gastric normal and cancer tissues using terahertz time-domain spectroscopy[J]. Materials, 2020, 13(1):1-10.
[22] Shi W, Wang Y, Hou Lei, et al. Detection of living cervical cancer cells by transient terahertz spectroscopy[J]. Journal of Biophotonics, 2020:e202000237.
[23] Zhang P, Zhong S C, Zhang J X, et al. Application of terahertz spectroscopy and imaging in the diagnosis of prostate cancer[J]. Current Optics and Photonics, 2020, 4(1):31-43.
[24] Liu W, Zhang R, Ling Y, et al. Automatic recognition of breast cancer based on terahertz spectroscopy with wavelet packet transform and machine learning[J]. Biomedical Optics Express, 2020, 170:105239.
[25] Li B, Zhao X T, Zhang Y, et al. Prediction and monitoring of leaf water content in soybean plants using terahertz time-domain spectroscopy[J]. Computers and Electronics in Agriculture, 2020, 29(9):098705.
[26] Wei X, Zheng W Q, Zhu S P, et al. Application of terahertz spectrum and interval partial least squares method in the identification of genetically modified soybeans[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2020, 238:1-8.
[27] Stantchev R I, Yu X, Blu T, et al. Real-time terahertz imaging with a single-pixel detector[J]. Nature Communications, 2020, 11(1):2535.
[28] Chen S C, Feng Z, Li J, et al. Ghost spintronic THzemitter-array microscope[J]. Light:Science & Applications, 2020, 9(1):99.
[29] 刘杰, 安健飞, 周人, 等. 应用在人体安检中的太赫兹近场MIMO-SAR技术[J]. 光电工程, 2020, 47(5):90-100.
[30] Tzydynzhapov G, Gusikhin P, Muravev V, et al. New real-time sub-terahertz security body scanner[J]. Journal of Infrared, Millimeter and Terahertz Waves, 2020, 41(6):632-641.
[31] Helfrich E. T-MUSIC program to develop integrated mixed-mode RF electronics[EB/OL]. (2020-02-07)[2020-12-15]. https://militaryembedded.com/radar-ew/rf-and-microwave/t-music-program-to-develop-integrated-mixed-mode-rf-electronics
[32] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1):124-166.
文章导航

/