专题:2020年科技热点回眸

2020年3D打印热点回眸

  • 吴磊 ,
  • 张虞 ,
  • 邹苗苗 ,
  • 宋延林
展开
  • 1. 中国科学院化学研究所绿色印刷重点实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049
吴磊,副研究员,研究方向为连续3D打印及应用,电子信箱:wulei1989@iccas.ac.cn

收稿日期: 2020-12-16

  修回日期: 2021-01-04

  网络出版日期: 2021-03-10

基金资助

国家自然科学基金项目(51803219,51773206);国家重点研发计划项目(2018YFA0208501)

Achievements of 3D printing in 2020

  • WU Lei ,
  • ZHANG Yu ,
  • ZOU Miaomiao ,
  • SONG Yanlin
Expand
  • 1. Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences(ICCAS), Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-12-16

  Revised date: 2021-01-04

  Online published: 2021-03-10

摘要

3D打印是基于材料累加原理,将计算机中的三维模型通过分层添加材料打印出实物的一种增材制造技术。2020年,3D打印研究在打印机理、技术改进及应用拓展等方面取得了重要进展。从打印方法改进、新型墨水研发、新型结构制备和应用,以及金属3D打印机理研究等方面回顾了3D打印的年度研究热点和代表性成果。

本文引用格式

吴磊 , 张虞 , 邹苗苗 , 宋延林 . 2020年3D打印热点回眸[J]. 科技导报, 2021 , 39(1) : 212 -219 . DOI: 10.3981/j.issn.1000-7857.2021.01.018

Abstract

3D printing is an additive manufacturing technology that rapidly turns computer-aided designs into complex 3D objects on demand. As an attractive research field and emerging industrial technology, 3D printing research made great progress in mechanism, method and functionalization in 2020. This article reviews the research hotspots and representative results of 3D printing from the aspects of printing method improvement, new ink development, solidification nucleation mechanism, new structure preparation, as well as new applications.

参考文献

[1] Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228):1349-1352.
[2] Wu L, Dong Z, Du H, et al. Bioinspired ultra-low adhesive energy interface for continuous 3d printing:Reducing curing induced adhesion[J]. Research, 2018:4795604.
[3] Walker D A, Hedrick J L, Mirkin C A. Rapid, large-volume, thermally controlled 3D printing using a mobile liquid interface[J]. Science, 2019, 366(6463):360-364.
[4] Kelly B E, Bhattacharya I, Heidari H, et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363(6431):1075-1079.
[5] Zhang Y, Dong Z, Li C, et al. Continuous 3D printing from one single droplet[J]. Nature Communications, 2020, 11(1):4685.
[6] Loterie D, Delrot P, Moser C. High-resolution tomographic volumetric additive manufacturing[J]. Nature Communications, 2020, 11(1):852.
[7] Park J U, Hardy M, Kang S J, et al. High-resolution electrohydrodynamic jet printing[J]. Nature Materials, 2007, 6(10):782-789.
[8] Liashenko I, Rosell-Llompart J, Cabot A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection[J]. Nature Communications, 2020, 11(1):753.
[9] Skylar-Scott M A, Mueller J, Visser C W, et al. Voxelated soft matter via multimaterial multinozzle 3D printing[J]. Nature, 2019, 575(7782):330-335.
[10] Giachini P A G S, Gupta S S, Wang W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients[J]. Science Advances, 2020, 6(8):eaay0929.
[11] Yuk H, Lu B Y, Lin S, et al. 3D printing of conducting polymers[J]. Nature Communications, 2020, 11(1):1604.
[12] Wallin T J, Simonsen L E, Pan W Y, et al. 3D printable tough silicone double networks[J]. Nature Communications, 2020, 11(1):4000.
[13] Wang K Y, Pan W Y, Liu Z, et al. 3D printing of viscoelastic suspensions via digital light synthesis for tough nanoparticle-elastomer composites[J]. Advanced Materials, 2020, 32(25):2001646.
[14] Davidson E C, Kotikian A, Li S C, et al. 3D printable and reconfigurable liquid crystal elastomers with lightinduced shape memory via dynamic bond exchange[J]. Advanced Materials, 2020, 32(1):1905682.
[15] Ze Q J, Kuang X, Wu S, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation[J]. Advanced Materials, 2020, 32(4):1906657.
[16] Zhao S Y, Siqueira G, Drdova S, et al. Additive manufacturing of silica aerogels[J]. Nature, 2020, 584(7821):387-392.
[17] Wu L, Dong Z C, Cai Z R, et al. Highly efficient threedimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications, 2020, 11(1):521.
[18] Wangpraseurt D, You S T, Azam F, et al. Bionic 3D printed corals[J]. Nature Communications, 2020, 11(1):1178.
[19] Sun L D, Gu H C, Liu X J, et al. 3D-printed cellular tips for tuning fork atomic force microscopy in shear mode[J]. Nature Communications, 2020, 11(1):5732.
[20] Xie J, You X, Huang Y, et al. 3D-printed integrative probeheads for magnetic resonance[J]. Nature Communications, 2020, 11(1):5793.
[21] Khairallah S A, Martin A A, Lee J R I, et al. Controlling interdependent meso-nanosecond dynamics and defect generation inmetal 3D printing[J]. Science, 2020, 368(6491):660-665.
[22] Zhao C, Parab D N, Li X X, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370(6520):1080-1086.
[23] Philipp K, Markus B W, Andreas W, et al. Highstrength Damascus steel by additive manufacturing[J]. Nature, 2020, 582(7813), 515-519.
文章导航

/