[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer Journal for Clinicians, 2021, 71(1):1-41.
[2] Chen W, Zheng R, Baade P D, et al. Cancer statistics in China, 2015[J]. CA:A Cancer Journal for Clinicians, 2016, 66(2):115-132.
[3] Gettinger S, Horn L, Jackman D, et al. Five-year followup of nivolumab in previously treated advanced nonsmall-cell lung cancer:Results from the CA209-003 study[J]. Journal of Clinical Oncology, 2018, 36(17):1675-1684.
[4] O'Donnell J S, Teng M, Smyth M J. Cancer immunoediting and resistance to T cell-based immunotherapy[J]. Nature Reviews Clinical Oncology, 2019, 16(3):151-167.
[5] Topalian S L, Hodi F S, Brahmer J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. The New England Journal of Medicine, 2012, 366(26):2443-2454.
[6] Marcus L, Lemery S J, Keegan P, et al. FDA Approval summary:Pembrolizumab for the treatment of microsatellite instability-high solid tumors[J]. Clinical Cancer Research, 2019, 25(13):3753-3758.
[7] Le D T, Durham J N, Smith K N, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349):409-413.
[8] Baretti M, Le D T. DNA mismatch repair in cancer[J]. Pharmacology & Therapeutics, 2018, 189:45-62.
[9] Chung H C, Ros W, Delord J P, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer:Results from the phase II KEYNOTE-158 study[J]. Journal of Clinical Oncology, 2019, 37(17):1470-1478.
[10] Marabelle A, Le D T, Ascierto P A, et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer:Results from the phase II KEYNOTE-158 study[J]. Journal of Clinical Oncology, 2020, 38(1):1-10.
[11] Strosberg J, Mizuno N, Doi T, et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors:Results from the phase II KEYNOTE-158 study[J]. Clinical Cancer Research, 2020, 26(9):2124-2130.
[12] Schrock A B, Ouyang C, Sandhu J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer[J]. Annals of Oncology, 2019, 30(7):1096-1103.
[13] Osipov A, Lim S J, Popovic A, et al. Tumor mutational burden, toxicity and response of immune checkpoint inhibitors (ICIs) targeting PD(L)1, CTLA-4, and combination:A meta-regression analysis[J]. Clinical Cancer Research, 2020, 26(18):4842-4851.
[14] Wu Y, Xu J, Du C, et al. The predictive value of tumor mutation burden on efficacy of immune checkpoint inhibitors in cancers:A systematic review and meta-analysis[J]. Frontiers in Oncology, 2019(9):1161.
[15] Gibney G T, Weiner L M, Atkins M B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy[J]. Lancet Oncology, 2016, 17(12):e542-e551.
[16] Havel J J, Chowell D, Chan T A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nature Reviews Cancer, 2019, 19(3):133-150.
[17] Wu H X, Chen Y X, Wang Z X, et al. Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers[J]. Journal for Immunotherapy of Cancer, 2019, 7(1):264.
[18] Pursell Z F, Isoz I, Lundström E B, et al. Yeast DNA polymerase epsilon participates in leading-strand DNA replication[J]. Science, 2007, 317(5834):127-130.
[19] Burgers P M. Polymerase dynamics at the eukaryotic DNA replication fork[J]. Journal of Biological Chemistry, 2009, 284(7):4041-4045.
[20] Agbor A A, Göksenin A Y, LeCompte K G, et al. Human Pol ε -dependent replication errors and the influence of mismatch repair on their correction[J]. DNA Repair, 2013, 12(11):954-963.
[21] Bębenek A, Ziuzia-Graczyk I. Fidelity of DNA replication-a matter of proofreading[J]. Current Opinion in Genetics & Development, 2018, 64(5):985-996.
[22] Stucki M, Pascucci B, Parlanti E, et al. Mammalian base excision repair by DNA polymerases delta and epsilon[J]. Oncogene, 1998, 17(7):835-843.
[23] Lehmann A R. DNA polymerases and repair synthesis in NER in human cells[J]. DNA Repair, 2011, 10(7):730-733.
[24] Tran H T, Gordenin D A, Resnick M A. The 3'——>5' exonucleases of DNA polymerases delta and epsilon and the 5'——>3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 1999, 19(3):2000-2007.
[25] Zhang Y, Yuan F, Presnell S R, et al. Reconstitution of 5'-directed human mismatch repair in a purified system[J]. Cell, 2005, 122(5):693-705.
[26] Lydeard J R, Jain S, Yamaguchi M, et al. Break-induced replication and telomerase-independent telomere maintenance require Pol32[J]. Nature, 2007, 448(7155):820-823.
[27] Rayner E, van Gool I C, Palles C, et al. A panoply of errors:Polymerase proofreading domain mutations in cancer[J]. Nature Reviews Cancer, 2016, 16(2):71-81.
[28] Lange S S, Takata K I, Wood R D. DNA polymerases and cancer[J]. Nature Reviews Cancer, 2011, 11(2):96-110.
[29] Li H D, Cuevas I, Zhang M, et al. Polymerase-mediated ultramutagenesis in mice produces diverse cancers with high mutational load[J]. Journal of Clinical Investigation, 2018, 128(9):4179-4191.
[30] Castellsagué E, Li R, Aligue R, et al. Novel POLE pathogenic germline variant in a family with multiple primary tumors results in distinct mutational signatures[J]. Human Mutation, 2019, 40(1):36-41.
[31] Palles C, Cazier J B, Howarth K M, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinoma[J]. Nature Genetics, 2013, 45(2):136-144.
[32] Buchanan D D, Stewart J R, Clendenning M, et al. Risk of colorectal cancer for carriers of a germ-line mutation in POLE or POLD1[J]. Genetics in Medicine, 2018, 20(8):890-895.
[33] Zhu Q, Zhang J, Chen Y, et al. Whole-exome sequencing of ovarian cancer families uncovers putative predisposition genes[J]. International Journal of Cancer, 2020, 146(8):2147-2155.
[34] Mur P, García-Mulero S, Del V J, et al. Role of POLE and POLD1 in familial cancer[J]. Genetics in Medicine, 2020, 22(12):2089-2100.
[35] Bellido F, Pineda M, Aiza G, et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis:Review of reported cases and recommendations for genetic testing and surveillance[J]. Genetics in Medicine, 2016, 18(4):325-332.
[36] Hamzaoui N, Alarcon F, Leulliot N, et al. Genetic, structural, and functional characterization of POLE polymerase proofreading variants allows cancer risk prediction[J]. Genetics in Medicine, 2020, 22(9):1533-1541.
[37] Wang Y, Ju L, Guo Z, et al. Pedigree analysis of a POLD1 germline mutation in urothelial carcinoma shows a close association between different mutation burdens and overall survival[J]. Cellular & Molecular Immunology, 2021, 18(3):767-769
[38] Liontos M, Anastasiou I, Bamias A, et al. DNA damage, tumor mutational load and their impact on immune responses against cancer[J]. Annals of Translational Medicine, 2016, 4(14):264.
[39] Subudhi S K, Vence L, Zhao H, et al. Neoantigen responses, immune correlates, and favorable outcomes after ipilimumab treatment of patients with prostate cancer[J]. Science Translational Medicine, 2020, 12(537):eaaz3577.
[40] Fumet J D, Truntzer C, Yarchoan M, et al. Tumour mutational burden as a biomarker for immunotherapy:Current data and emerging concepts[J]. European Journal of Cancer, 2020, 131:40-50.
[41] Wang F, Zhao Q, Wang Y N, et al. Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types[J]. JAMA Oncology, 2019, 5(10):1504-1506.
[42] Chalmers Z R, Connelly C F, Fabrizio D, et al. Analysis of 100, 000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Medicine, 2017, 9(1):34.
[43] Barresi V, Simbolo M, Mafficini A, et al. Ultra-mutation in IDH wild-type glioblastomas of patients younger than 55 years is associated with defective mismatch repair, microsatellite instability, and giant cell enrichment[J]. Cancers, 2019, 11(9):1279.
[44] Voutsadakis I A. High tumor mutation burden and other immunotherapy response predictors in breast cancers:Associations and therapeutic opportunities[J]. Targeted Oncology, 2020, 15(1):127-138.
[45] Campbell B B, Light N, Fabrizio D, et al. Comprehensive analysis of hypermutation in human cancer[J]. Cell, 2017, 171(5):1042-1056.
[46] Haradhvala N J, Kim J, Maruvka Y E, et al. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair[J]. Nature Communications, 2018, 9(1):1746.
[47] Andrianova M A, Bazykin G A, Nikolaev S I, et al. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand[J]. Genome Research, 2017, 27(8):1336-1343.
[48] Yao J, Gong Y, Zhao W, et al. Comprehensive analysis of POLE and POLD1 gene variations identifies cancer patients potentially benefit from immunotherapy in Chinese population[J]. Scientific Reports, 2019, 9(1):15767.
[49] Chang S C, Lan Y T, Lin P C, et al. Patterns of germline and somatic mutations in 16 genes associated with mismatch repair function or containing tandem repeat sequences[J]. Cancer Medicine, 2020, 9(2):476-486.
[50] Kandoth C, Schultz N, Cherniack A D, et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497(7447):67-73.
[51] Briggs S, Tomlinson I. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers[J]. The Journal of Pathology, 2013, 230(2):148-153.
[52] Billingsley C C, Cohn D E, Mutch D G, et al. Polymerase ? (POLE) mutations in endometrial cancer:clinical outcomes and implications for Lynch syndrome testing[J]. Cancer, 2015, 121(3):386-394.
[53] Bosse T, Nout R A, McAlpine J N, et al. Molecular classification of grade 3 endometrioid endometrial cancers identifies distinct prognostic subgroups[J]. The American Journal of Surgical Pathology, 2018, 42(5):561-568.
[54] He D, Wang H, Dong Y, et al. POLE mutation combined with microcystic, elongated and fragmented (MELF) pattern invasion in endometrial carcinomas might be associated with poor survival in Chinese women[J]. Gynecologic Oncology, 2020, 159(1):36-42.
[55] Travaglino A, Raffone A, Gencarelli A, et al. Clinicopathological features associated with mismatch repair deficiency in endometrial undifferentiated/dedifferentiated carcinoma:A systematic review and meta-analysis[J]. Gynecologic Oncology, 2021, 160(2):579-585.
[56] Ashley C W, Da C P A, Kumar R, et al. Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression[J]. Gynecologic Oncology, 2019, 152(1):11-19.
[57] Timmerman S, van Rompuy A S, van Gorp T, et al. Analysis of 108 patients with endometrial carcinoma using the PROMISE classification and additional genetic analyses for MMR-D[J]. Gynecologic Oncology, 2020, 157(1):245-251.
[58] van Gool I C, Ubachs J, Stelloo E, et al. Blinded histopathological characterisation of POLE exonuclease domain-mutant endometrial cancers:Sheep in wolf's clothing[J]. Histopathology, 2018, 72(2):248-258.
[59] van Gool I C, Bosse T, Church D N. POLE proofreading mutation, immune response and prognosis in endometrial cancer[J]. Oncoimmunology, 2015, 5(3):e1072675.
[60] van Gool I C, Eggink F A, Freeman-Mills L, et al. POLE proofreading mutations elicit an antitumor immune response in endometrial cancer[J]. Clinical Cancer Research, 2015, 21(14):3347-3355.
[61] Howitt B E, Shukla S A, Sholl L M, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumorinfiltrating lymphocytes, and expression of PD-1 and PD-L1[J]. JAMA Oncology, 2015, 1(9):1319-1323.
[62] Ott P A, Bang Y J, Berton-Rigaud D, et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer:Results from the KEYNOTE-028 study[J]. Journal of Clinical Oncology, 2017, 35(22):2535-2541.
[63] van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer[J]. Annals of Oncology, 2016, 27(8):1386-1422.
[64] Le D T, Uram J N, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. The New England Journal of Medicine, 2015, 372(26):2509-2520.
[65] Le D T, Kim T W, Cutsem E V, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer:KEYNOTE-164[J]. Journal of Clinical Oncology, 2020, 38(1):11-19.
[66] Overman M J, McDermott R, Leach J L, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142):An open-label, multicentre, phase 2 study[J]. Lancet Oncology, 2017, 18(9):1182-1191.
[67] Andre T, Shiu K, Kim T W, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer:The phase 3 KEYNOTE-177 study[J]. Journal of Clinical Oncology, 2020, 38:A4.
[68] Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer:A review[J]. Cancer Treatment Reviews, 2016, 51:19-26.
[69] Johansen A, Kassentoft C G, Knudsen M, et al. Validation of computational determination of microsatellite status using whole exome sequencing data from colorectal cancer patients[J]. BMC Cancer, 2019, 19(1):971.
[70] Din S, Wong K, Mueller M F, et al. Mutational analysis identifies therapeutic biomarkers in inflammatory bowel disease-associated colorectal cancers[J]. Clinical Cancer Research, 2018, 24(20):5133-5142.
[71] Xu Y, Li C, Zhang Y, et al. Comparison between familial colorectal cancer type x and lynch syndrome:Molecular, clinical, and pathological characteristics and pedigrees[J]. Frontiers in Oncology, 2020, 10:1603.
[72] Yamaguchi K, Shimizu E, Yamaguchi R, et al. Development of an MSI-positive colon tumor with aberrant DNA methylation in a PPAP patient[J]. Journal of Human Genetics, 2019, 64(8):729-740.
[73] Maletzki C, Hühns M, Bauer I, et al. Suspected hereditary cancer syndromes in young patients:Heterogeneous clinical and genetic presentation of colorectal cancers[J]. The Oncologist, 2019, 24(7):877-882.
[74] Glaire M, Domingo E, Vermeulen L, et al. POLE proofreading domain mutation defines a subset of immunogenic colorectal cancers with excellent prognosis[J]. Annals of Oncology, 2016, 27(S6):149-206.
[75] Domingo E, Freeman-Mills L, Rayner E, et al. Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer:A retrospective, pooled biomarker study[J]. The Lancet Gastroenterology & Hepatology, 2016, 1(3):207-216.
[76] Mo S, Ma X, Li Y, et al. Somatic POLE exonuclease domain mutations elicit enhanced intratumoral immune responses in stage II colorectal cancer[J]. Journal for Immunotherapy of Cancer, 2020, 8(2):e881.
[77] Vasaikar S, Huang C, Wang X, et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities[J]. Cell, 2019, 177(4):1035-1049.
[78] Gong J, Wang C, Lee P P, et al. Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a POLE mutation[J]. Journal of the National Comprehensive Cancer Network, 2017, 15(2):142-147.
[79] Forgó E, Gomez A J, Steiner D, et al. Morphological, immunophenotypical and molecular features of hypermutation in colorectal carcinomas with mutations in DNA polymerase ε (POLE)[J]. Histopathology, 2020, 76(3):366-374.
[80] Kim J H, Kim S Y, Baek J Y, et al. A Phase II study of avelumab monotherapy in patients with mismatch repairdeficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer[J]. Cancer Research and Treatment, 2020, 52(4):1135-1144.
[81] Liu L, Ruiz J, O'Neill S S, et al. Favorable outcome of patients with lung adenocarcinoma harboring POLE mutations and expressing high PD-L1[J]. Molecular Cancer, 2018, 17(1):81.
[82] Min K, Kim W, Kim D, et al. High polymerase ε expression associated with increased CD8+T cells improves survival in patients with non-small cell lung cancer[J]. PloS One, 2020, 15(5):e233066.
[83] Song Z, Cheng G, Xu C, et al. Clinicopathological characteristics of POLE mutation in patients with non-smallcell lung cancer[J]. Lung Cancer, 2018, 118:57-61.
[84] Rizvi N A, Hellmann M D, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230):124-128.
[85] Gjoerup O, Brown C A, Ross J S, et al. Identification and utilization of biomarkers to predict response to immune checkpoint inhibitors[J]. The AAPS Journal, 2020, 22(6):132.
[86] Hühns M, Nürnberg S, Kandashwamy K K, et al. High mutational burden in colorectal carcinomas with monoallelic POLE mutations:Absence of allelic loss and gene promoter methylation[J]. Modern Pathology 2020, 33(6):1220-1231.
[87] Wang C, Gong J, Tu T Y, et al. Immune profiling of microsatellite instability-high and polymerase ε (POLE) -mutated metastatic colorectal tumors identifies predictors of response to anti-PD-1 therapy[J]. Journal of Gastrointestinal Oncology, 2018, 9(3):404-415.
[88] Crumley S, Kurnit K, Hudgens C, et al. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes[J]. Modern Pathology, 2019, 32(3):396-404.
[89] Siraj A K, Parvathareddy S K, Bu R, et al. Germline POLE and POLD1 proofreading domain mutations in endometrial carcinoma from Middle Eastern region[J]. Cancer Cell International, 2019, 19:334.
[90] Rosner G, Gluck N, Carmi S, et al. POLD1 and POLE gene mutations in jewish cohorts of early-onset colorectal cancer and of multiple colorectal adenomas[J]. Diseases of the Colon & Rectum, 2018, 61(9):1073-1079.
[91] Gotoh O, Sugiyama Y, Takazawa Y, et al. Clinically relevant molecular subtypes and genomic alteration-independent differentiation in gynecologic carcinosarcoma[J]. Nature Communications, 2019, 10(1):4965.
[92] Liang X, Vacher S, Boulai A, et al. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer[J]. Breast Cancer Research, 2018, 20(1):88.