研究论文

核电厂冷却塔布置对气载流出物扩散的影响

  • 王炫 ,
  • 魏国良 ,
  • 张亚男 ,
  • 陶威锭 ,
  • 王德忠 ,
  • 王博
展开
  • 1. 上海核工程研究设计院有限公司, 上海 200233;
    2. 上海交通大学机械与动力工程学院, 上海 200240;
    3. 生态环境部核与辐射安全中心, 北京 100082
王炫,高级工程师,研究方向为核事故应急与仿真,电子信箱:wangxuan@snerdi.com.cn

收稿日期: 2020-01-19

  修回日期: 2020-04-26

  网络出版日期: 2021-05-13

基金资助

国家科技重大专项大型先进压水堆及高温气冷堆核电站项目(2017ZX06004001);IAEA国际合作课题(22578);国家核应急响应技术支持中心课题(19FW160);核安全与仿真技术国防重点学科实验室2017年专项基金项目(HX2018029)

Impact of large natural draft cooling tower layout on atmospheric dispersion of airborne effluent from nuclear power plant

  • WANG Xuan ,
  • Wei Guoliang ,
  • ZHANG Yanan ,
  • TAO Weiding ,
  • WANG Dezhong ,
  • WANG Bo
Expand
  • 1. Shanghai Nuclear Engineering Research and Design Institute CO., LTD, Shanghai 200233, China;
    2. School of Mechanical and Power Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, China

Received date: 2020-01-19

  Revised date: 2020-04-26

  Online published: 2021-05-13

摘要

分析了4种可能的冷却塔平面布局方案,分别为单一冷却塔布置、矩形布置、一字型布置以及S型布置。针对不同的布置方案,应用计算流体力学软件scSTREAM提供的RNG k-ε湍流模型,开展污染物大气扩散模拟分析。对于单一冷却塔布置,在释放点与冷却塔之间的距离段内,其污染物分布为标准的高斯分布,同时其浓度也高出其他3种布置方案1个数量级。除了S型布置方案,其他3种方案在冷却塔背风侧均形成阶跃效应。冷却塔背风侧污染物的分布中,单一冷却塔布置方案的浓度结果小于其他3种方案,主要是因为大量污染物进入到冷却塔体,然后从冷却塔顶部排出,造成其背风侧浓度急剧下降。

本文引用格式

王炫 , 魏国良 , 张亚男 , 陶威锭 , 王德忠 , 王博 . 核电厂冷却塔布置对气载流出物扩散的影响[J]. 科技导报, 2021 , 39(7) : 102 -111 . DOI: 10.3981/j.issn.1000-7857.2021.07.012

Abstract

In terms of engineering design of nuclear power plants, four possible cooling tower layout schemes are given: single cooling tower layout, rectangular layout, inline layout and S-shaped layout, which cover most of the nuclear power plant sites. The RNG k-ε turbulence model in scSTREAM is used to simulate and analyze atmospheric diffusion of pollutants for different layout schemes. For a single cooling tower arrangement, the concentration distribution is a standard Gaussian distribution in the distance between release point and cooling tower, and its concentration is also significantly higher than those of the other three arrangements. In addition to the S-shaped arrangement, the other three solutions form a steep drop effect on the leeward side of the cooling tower. In the distribution of pollutants on the leeward side of the cooling tower, the concentration results of the single cooling tower arrangement are smaller than those of the other three schemes, mainly because a large amount of pollutants enter the cooling tower body and then discharge from the top of the cooling tower, causing a sharp concentration decrease on the leeward side.

参考文献

[1] Sadekin S, Zaman S, Mahfuz M, et al. Nuclear power as foundation of a clean energy future:A review[J]. Energy Procedia, 2019, 160:513-518.
[2] Peng L H, Zhang Y, Li F, et al. Policy implication of nuclear energy's potential for energy optimization and CO2 mitigation:A case study of Fujian, China[J]. Nuclear Engineering and Technology, 2019, 51(4):1154-1162.
[3] Liu P, Chu P H, Hou J C. Accommodation issue of nuclear power in China:Status quo, barriers and solutions[J]. Energy Strategy Reviews, 2018, 22:166-178.
[4] Xiao X J, Jiang K J. China's nuclear power under the global 1.5° C target:Preliminary feasibility study and prospects[J]. Advances in Climate Change Research, 2018, 9(2):138-143.
[5] NRC运行机组数据统计[EB/OL]. (2019-10-21)[2020-05-12]. https://www.nrc.gov/reactors/operating.html.
[6] 英国石油公司(BP)世界能源统计年鉴(2019年)[EB/OL]. (2019-06-12)[2020-05-12]. http://mp.ofweek.com/ecep/a245683926116.
[7] 2019年1-12月全国核电运行情况[EB/OL]. (2020-02-12)[2020-05-12]. http://www.china-nea.cn/site/content/36862.html.
[8] Ke Y, He G W, Gan P J, et al. R&D of emergency measures for water environment protection under severe accident of inland nuclear power plants[J]. Fusion Engineering and Design, 2017, 125:653-658.
[9] 牛华寺, 杨若冰, 陆程, 等. 某滨海核电厂循环水系统采用直流冷却和二次循环冷却方案比选[J]. 给水排水, 2018, 54(增1):1-4.
[10] 魏新渝, 张琨, 党煜钦, 等. 美国滨海核电厂温排水及生态影响分析和启示[J]. 科技导报, 2017, 35(23):94-102.
[11] Lee J. Evaluation of impacts of cooling tower design properties on the near-field environment[J]. Nuclear Engineering and Design, 2018, 326:65-78.
[12] Lin F, Li Y, Gu X L, et al. Prediction of ground vibration due to the collapse of a 235 m high cooling tower under accidental loads[J]. Nuclear Engineering and Design, 2013, 258:89-101.
[13] Chahine A, Matharan P, Wendum D, et al. Modelling atmospheric effects on performance and plume dispersal from natural draft wet cooling towers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 136:151-164.
[14] Adam K, Michał C, Ryszard B. 3D CFD modeling of natural draft wet-cooling tower with flue gas injection[J]. Applied Thermal Engineering, 2015, 91:824-833.
[15] 环境影响评价技术导则大气环境(HJ 2.2-2018)[S]. (2018-12-01)[2020-05-12]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/other/pjjsdz/201808/t20180814_451386.shtml.
[16] 核动力厂环境辐射防护规定(GB6249-2011)[S].[2011-09-01]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/hxxhj/fsxhjbz/201103/t20110309_201577.htm
[17] Beatriz S, Jose L S, Alberto M, et al. Modelling NOx concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model[J]. Atmospheric Environment, 2017, 163:155-165.
[18] Ghaemi far S, Aghaie M, Minuchehr A, et al. Evaluation of atmospheric dispersion of radioactive materials in a severe accident of the BNPP based on Gaussian model[J]. Progress in Nuclear Energy, 2019, 113:114-127.
[19] scSTREAM User's Guide Operation Manual[R/OL]. (2018-04-26)[2020-05-12]. https://www.cradle-cfd.com/product/scstream.html.
[20] 薛筝筝, 郭建侠, 汤志业, 等. 基于CFD的单个建筑物风场模拟参数选择[J]. 气象科技, 2014, 42:712-718.
文章导航

/