复杂海洋环境下振荡浮子式波能装置与波浪相互作用过程中,浮子迎浪侧会发生波浪爬升等非线性现象,严重时波浪会越过浮子顶部,这对波能装置的发电效率及工作性能产生不利影响。设计并进行了规则波作用下垂荡浮子迎浪侧波浪爬升特性的物理模型试验,探讨了波浪周期、常数PTO(能量摄取,power take-off)阻尼以及不同周期下改变常数阻尼对波浪爬升特性的影响。研究结果表明,波浪周期较大和PTO阻尼较小时,有利于降低浮子迎浪侧的波浪爬升幅度;波浪周期较小时,改变PTO阻尼对迎浪侧的波浪爬升幅度影响较小。
In the complex marine environment, there are some nonlinear phenomena such as the wave impinge on the front of the oscillationg buoy wave energy device, the wave run-up and overtopping during the interaction between the wave and the oscillating buoy, with negative effects on the safety and the working performance of the wave energy device. In this paper, the physical model tests are designed and conducted to investigate the wave run-up characteristics of the buoy on the wave-facing side, and the effects of the wave period, the value of constant PTO damping and the buoy motion amplitude on the wave run-up are discussed. Studies show that when the wave period is large and the PTO damping is small, it is beneficial to reduce the wave run-up amplitude on the wave-facing side of the buoy. When the wave period is small, the variation of the PTO damping has a very small effect on the wave run-up amplitude, while the run-up values are significantly affected by the amplitude of the heave motion.
[1] 郑崇伟, 贾本凯, 郭随平, 等. 全球海域波浪能资源储量分析[J]. 资源科学, 2013, 35(8):1611-1616.
[2] 肖惠民, 于波, 蔡维由. 世界海洋波浪能发电技术的发展现状与前景[J]. 水电与新能源, 2011(1):67-69.
[3] 韩冰峰, 褚金奎, 熊叶胜, 等. 海洋波浪能发电研究进展[J]. 电网与清洁能源, 2012, 28(2):61-66.
[4] Qiu S Q, Liu K, Wang D J, et al. A comprehensive review of ocean wave energy research and development in China[J]. Renewable and Sustainable Energy Reviews, 2019, 113:109271.
[5] António F, deFalcão O. Wave energy utilization:A review of the technologies[J]. Renewable and Sustainable Energy Reviews, 2009, 14(3):899-918.
[6] Xia D W, Ma C L, Xia Q. New wave energy devices developed in China[J]. Sea Technology, 2014, 55(5):35-37.
[7] 勾艳芬, 叶家玮, 李峰, 等. 振荡浮子式波浪能转换装置模型试验[J]. 太阳能学报, 2008, 29(4):498-501.
[8] 王梦, 陈林烽, 孙士艳. 振荡浮子阵列式波能转换装置水动力性能与效率研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(5):1-16.
[9] Goggins J, Finnegan W. Shape optimisation of floating wave energy converters for a specified wave energy spectrum[J]. Renewable Energy, 2014, 71:208-220.
[10] 史宏达, 曲娜, 曹飞飞, 等. 振荡浮子波能发电装置浮子运动性能的试验研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(6):124-130.
[11] Liu Z, Qu N, Shi H D. Experimental study on hydrodynamic performance of a wave energy converter within multi-heaving-buoys[J]. International Journal of Energy Research, 2017, 41:1351-1366.
[12] Huang S T, Shi H D, Cao F F, et al. Experimental study on interaction between degrees of freedom in a wave buoy[J]. Journal of Ocean University of China, 2019, 18(6):1256-1264.