振荡浮子式波能转换装置在防波堤上进行阵列化布置时,各装置的浮子获能体之间会发生复杂的水动力相互作用,影响装置的运动和发电性能。开展物理水池试验,研究了防波堤前振荡浮子式波能装置阵列的水动力响应特性,着重分析了不同波浪条件下浮子尺寸和分布间距对装置运动性能和发电功率的影响规律。研究发现,在所考虑的参数范围内,相同波况条件下,小半径浮子波能装置的发电功率更高;窄频带波浪环境中,小间距布置有利于产生更大的功率峰值,且入射波高对装置的发电功率有显著影响。
When an array of oscillating buoy wave energy converters is deployed in front of the breakwater, there will be complex hydrodynamic interactions between the buoy absorbers of each converter. This interaction can affect the buoys' motion and the corresponding power generation properties. In this paper, physical experiments are carried out in the wave tank to investigate the hydrodynamic characteristics of an array of oscillating buoy wave energy converters in front of the breakwater. The effects of the buoys' dimension and spacing on the motion and the power generation of each device are analyzed under different wave conditions. It is found that the wave energy converter with a smaller buoy has a higher power generation capability in the considered cases. A smaller spacing arrangement may not lead to a larger power. The incident wave height has a significant effect on the power generation.
[1] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017, 30(3):30-37.
[2] Zheng S, Zhang Y. Analytical study on wave power extraction from a hybrid wave energy converter[J]. Ocean Engineering, 2018, 165:252-263.
[3] 郑思明. 筏式波浪能海水淡化装置的水动力性能研究[D]. 北京:清华大学, 2016.
[4] 赵玄烈. 浮式防波堤-波浪能装置集成系统的水动力特性和能量输出特性的研究[D]. 大连:大连理工大学, 2018.
[5] Babarit A. Impact of long separating distances on the energy production of two interacting wave energy converters[J]. Ocean Engineering, 2010, 37:718-729.
[6] Ning D, He Z, Gou Y, et al. Near trapping effect on wave-power extraction by linear periodic arrays[J]. Sustainability, 2019, doi:10.3390/su12010029.
[7] Zhang W C, Liu H X, Zhang L, et al. Hydrodynamic analysis and shape optimization for vertical axisymmetric wave energy converters[J]. China Ocean Engineering, 2016, 30(6):954-966.
[8] Göteman M. Wave energy parks with point-absorbers of different dimensions[J]. Journal of Fluids & Structures, 2017, 74:142-157.
[9] 徐炬平. 港口水工建筑物[M]. 北京:人民交通出版社, 2011.
[10] McIver P, Evans D V. An approximate theory for the performance of a number of wave-energy devices set into a reflecting wall[J]. Applied Ocean Research, 1988, 10:58-65.
[11] Mavrakos S A, Katsaounis G M, Nielsen K, et al. Numerical performance investigation of an array of heaving wave power converters in front of a vertical breakwater[C]//Proceedings of The International Offshore and Polar Engineering Conference. Toulon:The International Society of Offshore and Polar Engineers, 2004:238-245.
[12] Schay J, Bhattacharjee J, Guedes Soares C. Numerical modelling of a heaving point absorber in front of a vertical wall[C]//Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France:ASME, 2013, doi:10.1115/omae2013-11491.
[13] Seo J H, Park W S, Lee J W. Performance analysis of OWC-MB hybrid wave energy harvesting system attached at caisson breakwater[J]. Journal of the Korean Society of Civil Engineers, 2015, 35:589-597.
[14] Martinelli L, Ruol P, Favaretto C, et al. Hybrid structure combining a wave energy converter and a floating breakwater[C]//Proceedings of The 26th International Ocean and Polar Engineering Conference. Rhodes, Greece:The International Society of Offshore and Polar Engineers, 2016.
[15] Zhao X L, Ning D Z. Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155:226-233.
[16] Zhang H, Zhou B, Vogel C, et al. Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter[J]. Applied Energy, 2020, 257:113996.
[17] Konispoliatis D N, Mavrakos S A. Wave power absorption by arrays of wave energy converters in front of a vertical breakwater:A theoretical study[J]. Energies, 2020, doi:10.3390/en13081985.
[18] Zhang C, Ning D. Hydrodynamic study of a novel breakwater with parabolic openings for wave energy harvest[J]. Ocean Engineering, 2019, 182:540-551.