为优化振荡浮子式波浪能装置的能量俘获效果,针对圆柱形浮子底部的形状对装置俘能的影响展开研究,选取主流的平底、圆锥底和半球底进行计算对比。首先,建立浮子运动的频域模型;然后,通过ANSYS-AQWA对3种浮子进行水动力计算,得到3种浮子的附加质量、辐射阻尼、波浪激励力、幅值响应算子等水动力参数,对结果进行比较;最后,在频域运动模型中加入阻尼控制,研究在波浪激励下不同底部形状浮子的能量俘获效果,结果表明,阻尼控制可以明显提高浮子的能量俘获效率,半球底浮子在波浪谱较宽的工况下能量俘获效果更好,而平底浮子更适合谱峰频率在其固有频率附近且波浪谱较窄的工况。
To optimize the energy capture efficiency of the oscillating buoy wave energy converter, the effect of the bottom shape of the cylindrical buoy on the energy capture is studied. The commonly used oscillating buoys with the flat bottom, the cone bottom, and the hemispheric bottom are selected for comparison. Firstly, the frequency-domain model of the buoy motion is established. Then, the hydrodynamic parameters of these three buoy types, such as the added mass, the radiation damping, the wave excitation force, and the response amplitude operator, are calculated by ANSYS-AQWA software and compared. Finally, the resistive control is put into the frequency-domain motion model to investigate the energy capture efficiency of the buoys of different bottom shapes under the wave excitation. The results show that the resistive control could significantly improve the energy capture efficiency of the buoys. The hemispherical bottom buoy has a higher energy capture efficiency under wider wave spectrum conditions, while the flat bottom buoy is more suitable when the wave spectrum peak frequency is close to its natural frequency and the wave spectrum is narrow.
[1] Mork G, Barstow S, Kabuth A, et al. Assessing the global wave energy potential[C]//Proceedings of the ASME 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai:OMAE, 2010:447-454.
[2] IEA. Data and statistics:Electricity[DB/OL].[2020-10-01]. https://www.iea.org.
[3] 程正顺, 杨建民, 胡志强, 等. 直接驱动浮子式波浪能转换装置频域模拟研究[J]. 太阳能学报, 2014, 35(7):1304-1310.
[4] 肖曦, 摆念宗, 康庆. 直驱式波浪发电系统浮子形状与排布优化研究[J]. 电工电能新技术, 2014, 33(9):7-13.
[5] 盛松伟, 叶寅. 圆柱形波浪能吸收体水动力学分析与优化设计[J]. 太阳能学报, 2013, 34(3):542-546.
[6] 罗华清, 刘延俊, 张募群, 等. 基于AQWA的波浪能发电装置主浮体水动力特性研究[J]. 船舶工程, 2016, 38(4):39-42.
[7] 陈启东, 曹灿, 顾泽堃, 等. 基于AQWA的锥底振荡浮子水动力特性研究[J]. 工业仪表与自动化装置, 2019(4):3-6.
[8] Zhang X, Tian X, Xiao L, et al. Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter[J]. Applied Energy, 2018, 228:450-467.
[9] Sheng W. Wave energy conversion and hydrodynamics modelling technologies:A review[J]. Renewable and Sustainable Energy Reviews, 2019, 109:482-498.
[10] Sheng W, Lewis A. Assessment of wave energy extraction from seas:Numerical validation[J]. Journal of Energy Resources Technology, 2012, 134(4):041701.1-041701.8.
[11] 肖曦, 摆念宗, 康庆, 等. 波浪发电系统发展及直驱式波浪发电系统研究综述[J]. 电工技术学报, 2014, 29(3):1-11.
[12] Sheng W, Alcorn R, Lewis T. Physical modelling of wave energy converters[J]. Ocean Engineering, 2014, 84:29-36.