为了研究发电场机组阵列排布方式对产能的影响,通过设置不同的行列间距组合,分析了每种机组阵列排布方式下行列间距对产能的影响及其内在联系。基于Delft3D-Flow模块,建立了斋堂岛水域水动力模型,根据全年平均TSE指数分布确定发电场布置区域,依据斋堂岛水域潮流特性及EMEC标准确定机组垂向放置位置。在选定区域内,通过对比研究25种不同的排布方式,结果显示:在一定范围内,行列间距增大会导致阵列总产能下降,且产能变化逐渐趋于平缓。
This paper studies the influence of the array arrangement of the tidal farm on the power generation, by considering different row and column spacing combinations. Based on the Delft3D-Flow module, a hydrodynamic model of the Zhaitang Island's waters is established, the site of the tidal farm is selected according to the annual average TSE index distribution, and the vertical placement is determined according to the tidal current characteristics of the Zhaitang Island's waters and the EMEC standards. And through the comparative study of 25 different arrangements, it is shown that within a certain range, the increase of the row and column spacing will reduce the total power of the array, and the changes gradually tend to be flatened.
[1] Zhou Z, Benbouzid M, Charpentier J F, et al. Developments in large marine current turbine technologies-A review[J]. Renewable and Sustainable Energy Reviews, 2017, 71:852-858.
[2] 麻常雷, 夏登文, 王萌, 等. 国际海洋能技术进展综述[J]. 海洋技术学报, 2017, 36(4):70-72.
[3] Funke S W, Farrell P E, Piggott M D. Tidal turbine array optimisation using the adjoint approach[J]. Renewable Energy, 2014, 63:658-673.
[4] Divett T, Vennell R, Stevens C. Optimization of multiple turbine arrays in a channel with tidally reversing flow by numerical modelling with adaptive mesh[J]. Mathematical, Physical and Engineering Sciences, 2013, 371(1985):20120251.
[5] 刘丞, 汪昆, 汪雄海. 基于粒子群算法的潮流发电机布局[J]. 浙江大学学报(工学版), 2013, 47(12):2087-2093.
[6] Vennell R, Funke S W, Draper S, et al. Designing large arrays of tidal turbines:A synthesis and review[J]. Renewable & Sustainable Energy Reviews, 2015, 41:454-472.
[7] Baston S, Waldman S, Side J. Modelling energy extraction in tidal flows(Terawatt position paper, revision 3.1)[M]. Scotland:MASTS, 2015:75-107.
[8] Waldman S, Bastón S, Nemalidinne R, et al. Implementation of tidal turbines in MIKE 3 and Delft3D models of Pentland Firth & Orkney Waters[J]. Ocean & Coastal Management, 2017, 147:21-36.
[9] Ramos V, Ringwood J V. Implementation and evaluation of the International Electrotechnical Commission specification for tidal stream energy resource assessment:A case study[J]. Energy Conversion & Management, 2016, 127:66-79.
[10] 姜雪英, 王树杰, 司先才, 等. 斋堂岛海域潮流特性分析与微观选址[J]. 太阳能学报, 2018, 39(4):892-899.
[11] Iglesias G, Sánchez M, Carballo R, et al. The TSE index-a new tool for selecting tidal stream sites in depth-limited regions[J]. Renewable Energy, 2012, 48:350-357.
[12] Legrand C. Assessment of tidal energy resource:Marine renewable energy guides[M]. London:British Standards Institution, 2009.