专题:海洋能开发

海洋温差能发电透平设计及性能影响

  • 葛云征 ,
  • 彭景平 ,
  • 陈凤云 ,
  • 刘蕾 ,
  • 刘伟民
展开
  • 1. 自然资源部第一海洋研究所, 青岛 266061;
    2. 西安交通大学能源与动力工程学院, 西安 710049
葛云征,工程师,研究方向为海洋温差能发电,电子信箱:gyz1248@163.com

收稿日期: 2020-10-12

  修回日期: 2020-12-21

  网络出版日期: 2021-05-14

基金资助

国家自然科学基金面上项目(41976204);中韩海洋科学共同研究中心项目(PI-2018-4);国家自然科学基金青年基金项目(51709055)

Design and performance of turbine in ocean thermal energy conversion

  • GE Yunzheng ,
  • PENG Jingping ,
  • CHEN Fengyun ,
  • LIU Lei ,
  • LIU Weimin
Expand
  • 1. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
    2. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2020-10-12

  Revised date: 2020-12-21

  Online published: 2021-05-14

摘要

通过对海洋温差能发电向心透平气动部分进行设计,对其气动性能及喷嘴的影响进行模拟研究。采用经验参数和遗传算法对其进行一维参数设计,并通过三维造型得到透平气动模型。采用计算流体动力学(CFD)技术对透平的三维流场和性能进行了数值模拟。结果表明,在设计工况下透平的气动效率达到86.5%。在此基础上,对设计工况下的喷嘴-叶轮径向间隙和喷嘴叶片安装角进行分析,得到喷嘴-叶轮相对径向间隙为0.04左右,可变喷嘴安装角约为37°时,透平的效率最高。因此,在设计工况下,可通过对喷嘴-叶轮径向间隙和喷嘴安装角进行微调来得到更高的透平效率;在非设计工况下,可采用可调喷嘴来适应不同工况下的流动,使得透平在不同工况下均有较好的工作性能。

本文引用格式

葛云征 , 彭景平 , 陈凤云 , 刘蕾 , 刘伟民 . 海洋温差能发电透平设计及性能影响[J]. 科技导报, 2021 , 39(6) : 96 -101 . DOI: 10.3981/j.issn.1000-7857.2021.06.014

Abstract

In order to improve the cycle efficiency of the ocean thermal energy conversion (OTEC), the performance of a radial inflow turbine is studied. Based on the 1-D thermodynamic design of the turbine with the main parameters determined by experience and modified by a genetic algorithm, an aerodynamic model of the turbine is built through the 3-D design of the volute, the nozzle and the impeller. The performance of the turbine under the design condition is studied by the computational fluid dynamics (CFD) and the numerical results show that the turbine efficiency is 86.5%. Finally, it is shown that the turbine has a good performance when the nozzle-impeller relative radial clearance is 0.04 and the nozzle stagger installation is about 37°. Therefore, the nozzle-impeller radial clearance and the nozzle installation angle can be fine-adjusted to obtain a higher turbine efficiency under the design condition; and under the non-design conditions. An adjustable nozzle mechanism can be used under the off-design conditions to put the turbine in a good working state under various working conditions.

参考文献

[1] Binger A. Potential and future prospects for Ocean Thermal Energy Conversion (OTEC) in Small Islands Developing States(SIDS)[J]. Water Science & Technology, 2004, 20(2):88-90.
[2] Berkovsky B. Ocean thermal energy[J]. Impact of Science on Society, 1987, 37(4):387-392.
[3] 计光华. 透平膨胀机[M]. 2版. 北京:机械工业出版社, 1982:9-11.
[4] 赵伟阁. 试验用200W氨饱和蒸汽透平的研究与开发[D]. 天津:天津大学, 2005.
[5] Nithesh K G, Chatterjee D, Oh C, et al. Design and performance analysis of radial-inflow turboexpander for OTEC application[J]. Renewable Energy, 2016, 85:834-843.
[6] Nithesh K G, Chatterjee D. Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system[J]. Applied Energy, 2016, 167:1-16.
[7] Nithesh K G, Samad A. Integrated CFD-Surrogate optimization to enhance efficiency of turbine designed for OTEC[J]. Main Themes, 2016, 24:148-152.
[8] Kim D Y, Kim Y T. Design of a 100kW-class radial inflow turbine for ocean thermal energy conversion using R32[J]. Journal of the Korean Society of Marine Engineering, 2014, 38(9):1101-1105.
[9] Kim D Y, Kim Y T. Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion[J]. Renewable Energy, 2017, 106:255-263.
[10] 李艳, 李海波, 顾春伟. 有机工质向心透平气动设计与变工况性能预测[J]. 工程热物理学报, 2013, 34(1):63-66.
[11] Chen F Y, Zhang L, Liu W M, et al. Experimental study on the performance of 15 kW OTEC system[J]. Advances in Energy, Environment and Materials Science, 2016, 11:49-52.
[12] Song P, Sun J J, Wang K, et al. Development of an optimization design method for turbomachinery by incorporating the cooperative coevolution genetic algorithm and adaptive approximate model[C]//ASME 2011 Turbo Expo:Turbine Technical Conference and Exposition. New York:ASME, 2011:10.1115/GT2011-45411.
[13] 葛云征, 彭景平, 吴浩宇, 等. 海洋温差能向心透平的气动设计及性能研究[J]. 可再生能源, 2019, 37(10):1560-1566.
[14] 李燕生, 陆桂林. 向心透平与离心压气机[M]. 北京:机械工业出版社, 1992:110-132.
文章导航

/