综述

普通菜豆晕疫病研究进展

  • 尹振功 ,
  • 王强 ,
  • 孟宪欣 ,
  • 郭怡璠 ,
  • 魏淑红 ,
  • 来永才
展开
  • 1. 黑龙江省农业科学院博士后科研工作站, 哈尔滨 150086;
    2. 黑龙江省农业科学院作物资源研究所, 哈尔滨 150086
尹振功,助理研究员,研究方向为普通菜豆抗病育种,电子信箱:yinzhengong@163.com

收稿日期: 2019-08-07

  修回日期: 2020-05-07

  网络出版日期: 2021-05-14

基金资助

农业部国家食用豆产业技术体系项目(CARS-08-G05);科技部国家农作物种质资源共享服务平台(NCGRC-2020-24);农业部农作物种质资源保护与利用专项(2017NWB036-23);黑龙江省科技厅科技创新跨越工程杂粮杂豆科技创新专项(HNK2019CX05)

Advances in studies of common bean halo blight

  • YIN Zhengong ,
  • WANG Qiang ,
  • MENG Xianxin ,
  • GUO Yifan ,
  • WEI Shuhong ,
  • LAI Yongcai
Expand
  • 1. Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin 150086, China;
    2. Institute of Crop Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China

Received date: 2019-08-07

  Revised date: 2020-05-07

  Online published: 2021-05-14

摘要

近年来,普通菜豆晕疫病在中国普通菜豆产区大面积发生,造成减产,甚至绝产,正发展成为危害普通菜豆生产的主要因素之一。然而,中国普通菜豆抗晕疫病种质资源本底不清,抗性遗传研究尚未开展,生产上可利用的抗病品种极度匮乏。为此,综述了普通菜豆晕疫病的病原菌特征、致病机理、检测方法、防治措施、抗性遗传、抗病种质资源筛选等方面的研究进展,并对普通菜豆晕疫病的研究方向提出建议。

本文引用格式

尹振功 , 王强 , 孟宪欣 , 郭怡璠 , 魏淑红 , 来永才 . 普通菜豆晕疫病研究进展[J]. 科技导报, 2021 , 39(6) : 102 -108 . DOI: 10.3981/j.issn.1000-7857.2021.06.015

Abstract

In recent years, the halo blight spreaded in a large area in the main producing areas of common bean in China, resulting in yield reductions or even crop failures with no yield at all. It is one of the main factors that endanger the production of common bean in China. However, the common bean germplasm resources against the halo blight are in an unclear state, with very few related genetic studies, and very scarce disease resistant varieties available for production. Therefore, this paper reviews studies of the pathogenic mechanism, the identification methods, the control measures, the resistance inheritance, and the selection of disease-resistant germplasm resources of common bean with anti-pathogen of halo blight, and puts forward suggestions for the urgent research directions of halo blight, to promote the research and development of genetic breeding with resistance to halo blight of common bean in China.

参考文献

[1] Graham P H, Ranalli P. Common bean (Phaseolus vulgaris L.)[J]. Field Crops Research, 1997, 53(1):131-146.
[2] Buruchara R, Chirwa R, Sperling L, et al. Development and delivery of bean varieties in Africa:The Pan-Africa Bean Research Alliance (PABRA) model[J]. African Crop Science Journal, 2011, 19(4):227-245.
[3] 朱吉风. 菜豆普通细菌性疫病抗性基因精细定位与候选基因分析[D]. 北京:中国农业科学院, 2018.
[4] Assefa T, Mahama A A, Brown A V, et al. A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.)[J]. Molecular Breeding, 2019, 39(2):20.
[5] Beebe S. Common bean breeding in the tropics[J]. Plant Breeding Reviews, 2012, 36(36):357-426.
[6] Burkholder W H. A new bacterial disease of the bean[J]. Phytopathology, 1926, 16(12):915-926.
[7] Manzanera A S, Asensio C, Singh S. Gamete selection for resistance to common and halo bacterial blights in dry bean intergene pool populations[J]. Crop Science, 2006, 46(1):131-135.
[8] Chatterton S, Balasubramanian P, Erickson R, et al. Identification of bacterial pathogens and races of Pseudomonas syringae pv. phaseolicola from dry bean fields in Western Canada[J]. Canadian Journal of Plant Pathology, 2016, 38(1):41-54.
[9] Rico A, López R, Asensio C, et al. Nontoxigenic strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods[J]. Phytopathology, 2003, 93(12):1553-1559.
[10] Félix-Gastélum R, Maldonado-Mendoza I, Navarrete-Maya R, et al. Identification of Pseudomonas syringae pv. phaseolicola as the causal agent of halo blight in yellow beans in northern Sinaloa, Mexico[J]. Phytoparasitica, 2016, 44(3):369-378.
[11] 王金生. 植物病原细菌学[M]. 北京:中国农业出版社, 2000:352-484.
[12] Taylor J, Teverson D M, Allen D J, et al. Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas[J]. Plant Pathology, 1996, 45(3):469-478.
[13] Birch R G, Alvarez A, Patil S S. A bacterial leaf spot caused in yam bean by Pseudomonas syringae pv. phaseolicola[J]. Phytopathology, 1981, 71(12):1289-1293.
[14] Hunter P, Taylor J. Patterns of interaction between isolates of three pathovars of Pseudomonas syringae and accessions of a range of host and nonhost legume species[J]. Plant Pathology, 2006, 55(1):46-53.
[15] Lindgren P B, Peet R C, Panopoulos N J. Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants[J]. Journal of Bacteriology, 1986, 168(2):512-522.
[16] Wengelnik K, Rossier O, Bonas U. Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes[J]. Journal of Bacteriology, 1999, 181(21):6828-6831.
[17] Everett K R, Taylor R K, Romberg M K, et al. First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand[J]. Australasian Plant Disease Notes, 2011, 6(1):67-71.
[18] Jin Q, He S Y. Role of the Hrp pilus in type III protein secretion in Pseudomonas syringae[J]. Science, 2001, 294(5551):2556-2558.
[19] Lorang J, Keen N. Characterization of avrE from Pseudomonas syringae pv. tomato:A hrp-linked avirulence locus consisting of at least two transcriptional units[J]. Molecular Plant-microbe Interactions, 1995, 8(1):49-57.
[20] Schwartz H F, Pastor-Corrales M. Halo blight[M]. Cali:Colombia, Bean Production Problems in the Tropics 2nd ed CIAT, 1989:285-301.
[21] Walker J, Patel P. Splash dispersal and wind as factors in epidemiology of halo blight of bean[J]. Phytopathology, 1964, 54:140-141.
[22] Webster D, Atkin J, Cross J. Bacterial Blights of Snap Beans[J]. Plant Disease, 1983, 67(9):935.
[23] Gross D C, Vidaver A. A selective medium for isolation of Corynebacterium nebraskense from soil and plant parts[J]. Phytopathology, 1979, 69(1):82-87.
[24] Van Vuurde J. Immunosorbent immunofluorescence microscopy (ISIF) and immunosorbent dilution-plating (ISDP):New methods for the detection of plant pathogenic bacteria[J]. Seed Science and Technology, 1983, 11:523-533.
[25] Borowicz B, Maćkowiak A, Pospieszny H. Improved identification of Pseudomonas savastanoi pv. phaseolicola at the molecular level[J]. EPPO Bulletin, 2002, 32(3):467-469.
[26] Mosqueda-Cano G, Herrera-Estrella L. A simple and efficient PCR method for the specific detection of Pseudomonas syringae pv phaseolicola in bean seeds[J]. World Journal of Microbiology and Biotechnology, 1997, 13(4):463-467.
[27] 赵丽涵, 王笑, 谢关林, 等. 免疫捕捉PCR法检测西瓜细菌性果斑病[J]. 农业生物技术学报, 2006, 14(6):946-951.
[28] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12):e63-e63.
[29] 杨万风, 刘艳, 刘翔, 等. 菜豆晕疫病菌环介导等温核酸扩增检测方法的建立[J]. 江苏农业学报, 2014, (6):1321-1327.
[30] Coyne D P, Schuster M L. Breeding and genetic studies of tolerance to several bean (Phaseolus vulgaris L.) bacterial pathogens[J]. Euphytica, 1974, 23(3):651-656.
[31] Taylor J, Teverson D M, Davis J H. Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris[J]. Plant Pathology, 1996, 45(3):479-485.
[32] Innes N, Conway J, Taylor J. Resistance to halo blight in the Cambridge accessions V4604 and V4058 of Phaseolus beans[J]. Annals of Applied Biology, 1984, 104(2):307-314.
[33] Patel P, Walker J. Resistance in Phaseolus to halo blight[J]. Phytopathology, 1965, 55(8):889-894.
[34] Hagedorn D, Walker J, Rand R. Wis. HBR 40 and Wis. HBR 72 bean germplasm[J]. Hortsci, 1974, 4:402.
[35] Conway J, Hardwick R C, Innes N L, et al. White-seeded beans (Phaseolus vulgaris) resistant to halo blight (Pseudomonas phaseolicola), to bean common mosaic virus, and to anthracnose (Colletotrichum lindemuthianum)[J]. The Journal of Agricultural Science, 1982, 99(3):555-560.
[36] Chataika B, Bokosi J M, Chirwa R M, et al. Inheritance of halo blight resistance in common bean[J]. African Crop Science Journal, 2011, 19(4):325-333.
[37] Fourie D. Characterization of halo blight races on dry beans in South Africa[J]. Plant Disease, 1998, 82(3):307-310.
[38] Zaiter H Z, Coyne D P. Testing inoculation methods and sources of resistance to the halo blight bacterium (Pseudomonas syringae pv. phaseolicola) in Phaseolus vulgaris[J]. Euphytica, 1984, 33(1):133-141.
[39] Mills L, Silbernagel M. A rapid screening technique to combine resistance to halo blight and bean common mosaic virus in Phaseolus vulgaris[J]. Euphytica, 1991, 58(3):201-208.
[40] Ghising K. Screening of The USDA Core collection of common bean for reaction to Halo Blight and identification of genomic regions associated with resistance[D]. Fargo:North Dakota State University, 2016.
[41] Arnold D L, Lovell H C, Jackson R W. Pseudomonas syringae pv. phaseolicola:From ‘has bean’ to supermodel[J]. Molecular Plant Pathology, 2011, 12(7):617-627.
[42] Liu J L, Liu X L, Dai L Y, et al. Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants[J]. Journal of Genetics and Genomics, 2007, 34(9):765-776.
[43] Gassmann W, Hinsch M E, Staskawicz B J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes[J]. The Plant Journal, 1999, 20(3):265-277.
[44] Miklas P N, Fourie D, Wagner J, et al. Tagging and mapping Pse-1 gene for resistance to halo blight in common bean differential cultivar UI-3[J]. Crop Science, 2009, 49(1):41-48.
[45] Miklas P N, Fourie D, Trapp J, et al. New loci including Pse-6 conferring resistance to halo bacterial blight on chromosome Pv04 in common bean[J]. Crop Science, 2014, 54(5):2099-2108.
[46] Miklas P N, Fourie D, Trapp J, et al. Genetic characterization and molecular mapping Pse-2 gene for resistance to halo blight in common bean[J]. Crop Science, 2011, 51(6):2439-2448.
[47] Walker J, Patel P. Inheritance of resistance to halo blight of bean[J]. Phytopathology, 1964, 54(2):140-141.
[48] Teverson D M. Genetics of pathogenicity and resistance in the halo-blight disease of beans in Africa[D]. Birmingham:The University of Birmingham, 1991.
[49] Pérez-Vega E, Pañeda A, Rodríguez-Suárez C, et al. Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.)[J]. Theoretical and Applied Genetics, 2010, 120(7):1367-1380.
[50] González A M, Yuste-Lisbona F J, Godoy L, et al. Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.)[J]. Molecular Breeding, 2016, 36(12):166.
[51] Ariyarathne H M, Coyne D P, Jung G, et al. Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean[J]. Journal of the American Society for Horticultural Science, 1999, 124(6):654-662.
[52] Yaish M W, Sosa D, Vences F J, et al. Genetic mapping of quantitative resistance to race 5 of Pseudomonas syringae pv. phaseolicola in common bean[J]. Euphytica, 2006, 152(3):397-404.
[53] Trabanco N, Asensio-Manzanera M C, Pérez-Vega E, et al. Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola[J]. Molecular Breeding, 2014, 33(3):577-588.
[54] Tock A J, Fourie D, Walley P G, et al. Genome-wide linkage and association mapping of halo blight resistance in common bean to race 6 of the globally important bacterial pathogen[J]. Frontiers in Plant Science, 2017, 8:1170.
[55] Wu J, Zhu J F, Wang L F, et al. Genome-wide association study identifies NBS-LRR-encoding genes related with anthracnose and common bacterial blight in the common bean[J]. Frontiers in Plant Science, 2017, 8:1398.
[56] Perseguini J M K C, Oblessuc P R, Rosa J R B F, et al. Genome-wide association studies of anthracnose and angular leaf spot resistance in common bean (Phaseolus vulgaris L.)[J]. PLoS One, 2016, 11(3):e0150506.
[57] Martin G B, Brommonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato[J]. Science, 1993, 262(5138):1432-1436.
文章导航

/