专题:飞机材料及制造技术

激光冲击、喷丸及其复合强化对TB6钛合金表面完整性及轴向疲劳性能的影响

  • 罗学昆 ,
  • 赵春玲 ,
  • 查小辉 ,
  • 王欣 ,
  • 宋颖刚 ,
  • 汤智慧
展开
  • 1. 中国航发北京航空材料研究院航空材料先进腐蚀与防护航发重点实验室, 北京 100095;
    2. 中国航发湖南动力机械研究所, 株洲 412002
罗学昆,高级工程师,研究方向为航空金属材料先进表面强化技术,电子信箱:luoxuekun1987@163.com

收稿日期: 2020-04-29

  修回日期: 2020-09-19

  网络出版日期: 2021-06-08

基金资助

国家科技重大专项(2017-VII-0001-0094和J2019-VII7-0015);中国航发自主创新专项(CXPT-2018-029)

Effect of laser shock peeing, shot peeing and their combination treatment on surface integrity and axial fatigue property of TB6 titanium alloy

  • LUO Xuekun ,
  • ZHAO Chunling ,
  • ZHA Xiaohui ,
  • WANG Xin ,
  • SONG Yinggang ,
  • TANG Zhihui
Expand
  • 1. Aviation Key Laboratory of Advanced Corrosion and Protection on Aviation Materials, AECC Beijing Institute of Aeronautical Material, Beijing 100095, China;
    2. Hunan Aviation Power Machinery Research Institute, Aero Engine Corporation of China, Zhuzhou 412002, China

Received date: 2020-04-29

  Revised date: 2020-09-19

  Online published: 2021-06-08

摘要

为了提升TB6钛合金旋翼的疲劳性能,研究了喷丸、激光冲击及两者的复合工艺等3种表面强化方法对钛合金表面完整性及高周疲劳性能的影响规律。采用白光干涉仪、X射线残余应力测试仪和扫描电子显微镜分别对加工前后试样的表面形貌、表面残余应力分布和微观组织等表面完整性特征参数进行了表征,并采用疲劳试验机分别测试了轴向应力疲劳寿命和疲劳极限。结果表明,在相同加载条件下,相比磨削试样,采用单一的激光冲击试样的轴向应力疲劳寿命提高了32.2倍,而单一的喷丸和激光冲击+喷丸复合强化的试样疲劳寿命均提高了至少126.4倍。激光冲击+喷丸复合强化表现出比单一的喷丸强化更优的疲劳极限增益效果。

本文引用格式

罗学昆 , 赵春玲 , 查小辉 , 王欣 , 宋颖刚 , 汤智慧 . 激光冲击、喷丸及其复合强化对TB6钛合金表面完整性及轴向疲劳性能的影响[J]. 科技导报, 2021 , 39(9) : 48 -55 . DOI: 10.3981/j.issn.1000-7857.2021.09.005

Abstract

To improve the fatigue performance of aircraft rotor of TB6 titanium alloy, the effects of laser shock peening (LSP), shot peening (SP) and their combination processing methods on surface integrity and axial fatigue property of the titanium alloy are investigated. The surface topography, residual stress distribution and microstructure are characterized by white light interferometer, X-ray diffraction stress tester and scanning electron microscope. The axial fatigue life and limit are investigated by fatigue tester. Results show that compared with the grinding (GD) specimen under the same test conditions, the fatigue life of LSP specimens is improved by 32.2 times, while the fatigue lifes of SP and the combination processing specimens are both increased by at least 126.4 times. The combination processing method exhibits better improvement for fatigue limit than the SP method.

参考文献

[1] Nakai M, Niinomi M, Hieda J, et al. Reduction in anisotropy of mechanical properties of coilable (α+β)-type titanium alloy thin sheet through simple heat treatment for use in next-generation aircraft applications[J]. Materials Science and Engineering A, 2014, 594:103-110.
[2] Ding J, Hall R, Byrne J. Effects of stress ratio and temperature on fatigue crack growth in a Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2005, 27(10):1551-1558.
[3] Lindemann J, Buque C, Appel F, et al. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Materialia, 2006, 54(4):1155-1164.
[4] Peters J O, Ritchie R O. Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V[J]. Engineering Fracture Mechanics, 2000, 67(3):193-207.
[5] Zhu L, Hu X, Jiang R, et al. Experimental investigation of small fatigue crack growth due to foreign object damage in titanium alloy TC4[J]. Materials Science and Engineering A, 2019, 739:214-224.
[6] Altenberger I. Alternative mechanical surface treatments:Microstructures, residual stresses & fatigue behavior[M]. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
[7] Field M, Kahles J F, Canmett J T. A review of measuring methods for surface integrity[R]. Switzeland:Ann CIRP, 1972.
[8] Xu Z, Dunleavey J, Antar M, et al. The influence of shot peening on the fatigue response of Ti-6Al-4V surfaces subject to different machining processes[J]. International Journal of Fatigue, 2018, 111:196-207.
[9] Lainé, S J, Knowles K M, Doorbar P J, et al. Microstructural characterization of metallic shot peened and laser shock peened Ti-6Al-4V[J]. Acta Materialia, 2017, 123:350-361.
[10] Yang Q, Zhou W L, Zhong Y N, et al. Effect of shotpeening on the fretting wear and crack initiation behavior of Ti-6Al-4V dovetail joint specimens[J]. International Journal of Fatigue, 2018, 107:83-95.
[11] Luong H, Hill M R. The effects of laser peening and shot peening on high cycle fatigue in 7050-T7451 aluminum alloy[J]. Materials Science and Engineering A, 2010, 527:699-707.
[12] Leap M J, Rankin J, Harrison J, et al. Effects of laser peening on fatigue life in an arrestment hook shank application for Naval aircraft[J]. International Journal of Fatigue, 2011, 33:788-799.
[13] Hatamleh O. A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints[J]. International Journal of Fatigue, 2019, 31:974-988.
[14] 戴泽峰. 基于纳秒激光冲击波效应的金属表面形貌与性能研究[D]. 镇江:江苏大学, 2014.
[15] 赵少汴. 抗疲劳设计手册[M]. 北京:机械工业出版社, 2015:36-40.
[16] 王欣, 王强, 宋颖刚, 等. 陶瓷丸喷丸对2124铝合金疲劳性能的影响[J]. 材料保护, 2011, 44(9):10-11.
[17] Zhan K, Jiang C H, Ji V. Uniformity of residual stress distribution on the surface of S30432 austenitic stainless steel by different shot peening processes[J]. Materials Letters, 2013, 99:61-64.
[18] Pant B K, Pavan A H V, Prakash R V, et al. Effect of laser peening and shot peening on fatigue striations during FCGR study of Ti6Al4V[J]. International Journal of Fatigue, 2016, 93:38-50.
文章导航

/