阿雷西博305 m口径射电望远镜在中国天眼(FAST)建成以前,曾经是世界最大的地面天文学装置,它创造了多项世界第一,例如参加阿波罗登月计划,发现首个地外行星,首次发现脉冲星双星系统并间接证实爱因斯坦预言的引力波存在,精确测定水星转动周期,实施雷达精确研究地球电离层的无线电传输特性等。阿雷西博于2020年12月意外倒塌,震惊了全世界。探究其建设背景和意义、取得的主要成就,对比中国大科学工程FAST的特色之处,介绍FAST的创新设计、工程建设方面的特点和科学探测上取得的主要成果,借此窥视中国科技的前进步伐。从科技史角度提出,FAST作为第四次工业革命的产物,预示着一个新时代的来临。
The Arecibo 305m-aperture radio telescope was once the largest ground astronomical device in the world before the Five hundred meter Aperture Spherical radio Telescope (FAST) being built. The Arecibo created many foremost achievements, such as joining the Apollo moon-landing Project, discovering the first extraterrestrial planet, discovering the binary-pulsar system firstly and indirectly proving the existence of gravitational wave predicted by Einstein, measuring the rotation period of the mercury accurately, and investigating radio transmission characteristics of earth's ionosphere accurately by radar. This paper tries to explore the background and significance of the construction and major achievements of the Arecibo, and briefly introduces the success of FAST in engineering construction and discoveries of early scientific exploration. Furthermore, it compares the features of the two telescopes, so as to survey the progress of Chinese science and technology. In terms of the FAST successful construction and operation and from the perspective of sci-tech history, FAST, as the product of the fourth industrial revolution, indicates the advent of a new era in China.
[1] The Arecibo Observatory[EB/OL].[2020-12-31]. http://www.naic.edu/ao.
[2] 500米口径球面射电望远镜[EB/OL].[2020-11-30]. http://fast.bao.ac.cn.
[3] Lyne A, Graham-Smith F. Pulsar astronomy[M]. Cambridge:Cambridge University Press, 2012:26.
[4] Lorimer D R, Kramer M. Handbook of pulsar astronomy[M]. Cambridge:Cambridge University Press, 2012:30.
[5] Qiu Y H. A novel design for a giant Arecibo-type spherical radio telescope with an active main reflector[J]. Monthly Notices of the Royal Astronomical Society, 1998, 301(3):827-830.
[6] 南仁东. 500 m球反射面射电望远镜FAST[J]. 中国科学:物理学·力学·天文学, 2005(5):3-20.
[7] Peng B, Nan R, Su Y, et al. Five-hundred-meter Aperture Spherical Telescope project[J]. Astrophysics & Space Science, 2001, 278(1/2):219-224.
[8] Hulse R A, Taylor J H. Discovery of a pulsar in a binary system[J]. Astrophysical Journal, 1975, 195(15):L51-L53.
[9] 吴鑫基. 帕克斯射电望远镜与脉冲星巡天发现——纪念脉冲星发现50年[J]. 科学, 2017(6):43-49.
[10] Li D, Wang P, Qian L, et al. FAST in space:Considerations for a multibeam, multipurpose survey using China's 500-m Aperture Spherical Radio Telescope (FAST)[J]. IEEE Microwave Magazine, 2018, 19(3):112-119.
[11] 张承民, 杨佚沿, 支启军. 从宋代"客星" 到中国"天眼" 中的脉冲星——"李约瑟难题" 试答[J]. 科技导报, 2018, 36(12):15-21.
[12] 闫振, 沈志强. FAST——脉冲星观测研究的利器[J]. 科技导报, 2017, 35(24):16-19.
[13] Pan Z C, Ransom S M, Lorimer D R, et al. The FAST discovery of an eclipsing binary millisecond pulsar in the globular cluster M92(NGC 6341)[J]. Astrophysical Journal, 2020, 892(1):L6-L10.
[14] Zhu W W, Li D, Luo R, et al. A fast radio burst discovered in FAST drift scan survey[J]. Astrophysical Journal, 2020, 895(1):L6-L12.
[15] Luo R, Wang B J, Men Y P, et al. Diverse polarization angle swings from a repeating fast radio burst source[J]. Nature, 2020, 586(7831):693-696.
[16] Lin L, Zhang C F, Wang P, et al. No pulsed radio emission during a bursting phase of a Galactic magnetar[J]. Nature, 2020, 587(7832):63-65.
[17] Zhang Z S, Werthimer D, Zhang T J, et al. First SETI observations with China's Five-hundred-meter Aperture Spherical radio Telescope (FAST)[J]. Astrophysical Journal, 2020, 891(2):174-189.
[18] Li D, Gajjar V, Wang P, et al. Opportunities to search for extraterrestrial intelligence with the FAST[J]. Research in Astronomy and Astrophysics, 2020, 20(5):78-89.