气象卫星是重要的国家基础性、战略性空间系统。美国极轨气象卫星体系通过融合美国国防部、美国海洋和大气管理局及欧洲气象卫星组织各自的极轨气象卫星系统,实现了全球全天时的持续覆盖能力。为获取高时效性全球范围气象卫星资料,近年来美国一直在探索气象卫星的转型发展。在梳理美国极轨气象卫星发展历程的基础上,分析了其多种转型探索,包括对美国国家海洋和大气管理局开展的新一代卫星架构研究项目,试点采购商业气象卫星数据,开展气象小卫星关键技术及载荷研究等。
Meteorological satellite is an important national basic and strategic space system. Especially in recent years, environmental problems have become increasingly severe, natural disasters have occurred frequently, and modern wars have put forward higher requirements for meteorological satellites in terms of accurate measurement of cloud conditions, ocean waves, atmospheric temperature, pressure, wind speed and other parameters. Although the polar-orbiting weather satellite system of the United States has achieved continuous global all-weather coverage by integrating the respective polar-orbiting weather satellite systems of DOD, NOAA, and EUMET, NOAA has been exploring the transformation and development of meteorological satellites, and has carried out a variety of transformation explorations such as new generation of satellite architecture research, pilot procurement of commercial meteorological satellite data, and research on key technologies of meteorological small satellites. This article reviews these transformation explorations to provide reference for the development of China's meteorological satellites.
[1] 陈双, 刘韬. 国外极轨气象卫星发展综述[J]. 国际太空, 2013, 000(9):11-19.
[2] 张定媛, 高浩. 美国极轨气象卫星的发展历程和面临的挑战[J]. 国际太空, 2015(8):63-67.
[3] 邢强. 美国的气象卫星的发展[J]. 国防科技工业, 2016(12):30-31.
[4] Strom S R, Iwanaga G. Overview and history of the defense meteorological satellite program[J]. Crosslink, 2005(3):11-15.
[5] Hall R C. A history of the military polar orbiting meteorological satellite program[R]. Chantilly:National Reconnaissance Office Chantilly VA, 2001.
[6] Writers S. Air Force Secretary unveils final DMSP satellite at SMC[EB/OL]. (2017-09-18)[2020-12-20]. http://www.spacedaily.com/reports/Air_Force_Secretary_unveils_final_DMSP_satellite_at_SMC_999.html.
[7] Fabey M. DoD meteorological satellite mission to end[EB/OL]. (2017-08-04)[2020-12-20]. http://spacenews.com/dod-meteorological-satellite-mission-to-end.
[8] Erwin S. DOD focus on climate could shape future investments in weather satellites[EB/OL]. (2021-02-24)[2021-04-01]. http://spacenews.com/dod-focus-on-climate-could-shape-future-investments-in-weather-satellites.
[9] Pereira J, Mamula D, Caulfield M, et al. NOAA's CubeSat-related activities for gap mitigation and future planning[C]//31st Annual AIAA/USU Conference on Small Satellites. Logan:Utah State University, 2017:1-7.
[10] Werner D. NOAA continues to explore options for future weather satellite architecture[EB/OL]. (2020-9-20)[2020-10-26]. http://spacenews.com/noaa-continues-to-explore-options-for-future-weather-satellite-architecture.
[11] SpaceNews. NOAA's future satellite architecture[EB/OL]. (2020-8-10)[2020-10-26]. http://spacenews.com/noaa-future-satellite-architecture.
[12] Volz S, Maier M, Di Pietro D. The NOAA satellite observing system architecture study[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway, NJ:IEEE, 2016:5518-5521.
[13] Erwin S. NOAA's former satellite now providing weather data to the U.S. military[EB/OL]. (2020-9-8)[2020-10-26]. http://spacenews.com/noaa-continues-to-exploreoptions-for-future-weather-satellite-architecture.
[14] Cirac-Claveras G. Weather satellites:Public, private and data sharing. The case of radio occultation data[J]. Space Policy, 2019, 47:94-106.
[15] Werner D. GeoOptics and Spire Global win NOAA weather data contracts[EB/OL]. (2020-11-23)[2020-11-26]. http://spacenews.com/noaa-awards-first-ro-contracts.
[16] Werner D. NOAA expands purchase of commerical radio occultation data for weather models[EB/OL]. (2021-02-19)[2021-04-01]. http://spacenews.com/noaa-expandsradio-occultation-order.
[17] Fisher J, Gordley L, Fritts D, et al. MetNet TM small weather satellite network:An alternative system for global meteorological observations[C]//31st Annual AIAA/USU Conference on Small Satellites. Logan:Utah State University, 2017:126-134.
[18] Blackwell W, Allen G, Galbraith C, et al. Nanosatellites for earth environmental monitoring:The MicroMAS project[C]//201212th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad). Piscataway, NJ:IEEE, 2012:1-4.
[19] Skone S, Swab M, Platzer P, et al. GNSS radio occultation methods for CubeSat missions:The University of Calgary and spire partnership[C]//AGU Fall Meeting Abstracts. Washington:American Geophysical Union, 2014:A23I-3353.
[20] Ruf C S, Gleason S, Jelenak Z, et al. The CYGNSS nanosatellite constellation hurricane mission[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2012:214-216.
[21] Pagano T S, Abesamis C, Andrade A, et al. Design and development of the CubeSat Infrared Atmospheric Sounder (CIRAS)[C]//Earth Observing Systems XXII. San Diego:International Society for Optics and Photonics, 2017, 10402:1-9.
[22] Schueler C, Holmes A. HawkEye:CubeSat SeaWiFS update[C]//CubeSats and NanoSats for Remote Sensing. San Diego:International Society for Optics and Photonics, 2016, 9978:99780H.
[23] Schueler C, Holmes A. SeaHawk CubeSat system engineering[C]//Remote Sensing System Engineering VI. San Diego:International Society for Optics and Photonics, 2016:99770A.
[24] Pagano T, Rider D, Teixeira J, et al. The CubeSat Infrared Atmospheric Sounder(CIRAS), pathfinder for the earth observing nanosatellite-infrared (EON-IR)[C]//30th AIAA/USU Conference on Small Satellites. Logan:Utah State University, 2016:47-53.
[25] Li Z, Li J, Schmit T J, et al. The alternative of CubeSatbased advanced infrared and microwave sounders for high impact weather forecasting[J]. Atmospheric and Oceanic Science Letters, 2019, 12(2):80-90.
[26] 杨军, 咸迪, 唐世浩. 风云系列气象卫星最新进展及应用[J]. 卫星应用, 2018, 000(11):8-14.