[1] Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
[2] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48:279-306.
[3] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A, 2004, 375/376/377:213-218.
[4] Ma D, Tan H, Zhang Y, et al. Correlation between glass formation and type of eutectic coupled zone in eutectic alloys[J]. Materials Transactions, 2003, 44(10):2007-2010.
[5] Gorsse S, Nguyen M H, Senkov O N, et al. Database on the mechanical properties of high entropy alloys and complex concentrated alloys[J]. Data in Brief, 2018, 21:2664-2678.
[6] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9):1758-1765.
[7] Soni V, Senkov O N, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy[J]. Scientific Reports, 2018, 8(1):8816.
[8] Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design, 2018, 139:498-511.
[9] Couzinié J P, Senkov O N, Miracle D B, et al. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys[J]. Data in Brief, 2018, 21:1622-1641.
[10] Karakose E, Keskin M. Microstructure evolution and mechanical properties of intermetallic Ni-xSi(x=5, 10, 15, 20) alloys[J]. Journal of Alloys and Compounds, 2012, 528:63-69.
[11] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5):698-706.
[12] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122:448-511.
[13] Melnick A B, Soolshenko V K. Thermodynamic design of high-entropy refractory alloys[J]. Journal of Alloys and Compounds, 2017, 694:223-227.
[14] 张勇, 周云军, 陈国良. 快速发展中的高熵溶体合金[J]. 物理, 2008, 37(8):600-605.
[15] Zhang Y, Zhou Y. Solid solution formation criteria for high entropy alloys[J]. Materials Science Forum, 2007, 561/562/563/564/565:1337-1339.
[16] Yeh J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006, 31(6):633-648.
[17] Tang Y P, Wang S R, Bin S, et al. Fabrication and wear behavior analysis on AlCrFeNi high entropy alloy coating under dry sliding and oil lubrication test conditions[J]. Surface Review and Letters, 2016, 23(4):1650018.
[18] Lin D, Zhang N, He B, et al. Tribological properties of FeCoCrNiAlB x high-entropy alloys coating prepared by laser cladding[J]. Journal of Iron and Steel Research (International), 2017, 24(2):184-189.
[19] Shun T T, Du Y C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy[J]. Journal of Alloys and Compounds, 2009, 478(1/2):269-272.
[20] Zhang Y, Liu Y, Li Y, et al. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite[J]. Materials Letters, 2016, 174:82-85.
[21] Hu Z H, Zhan Y Z, Zhang G H, et al. Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys[J]. Materials and Design, 2010, 31(3):1599-1602.
[22] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61:1-93.
[23] 梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展[J]. 材料工程, 2009(12):75-79.
[24] Guo S, Liu C T. Phase stability in high entropy alloys:formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science-Materials International, 2011, 21(6):433-446.
[25] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012(2/3), 132:233-238.
[26] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10):103505.
[27] Miracle D B, Miller J D, Senkov O N, et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 2014, 16(1):494-525.
[28] Wang Z J, Guo S, Liu C T. Phase selection in high-entropy alloys:From nonequilibrium to equilibrium[J]. JOM, 2014, 66(10):1966-1972.
[29] Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy[J]. Acta Materialia, 2014, 65:85-97.
[30] Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in highentropy alloys[J]. Nature, 2019, 574(7777):223-227.
[31] 张勇. 非晶和高熵合金[M]. 北京:科学出版社, 2010.
[32] Ranganathan S. Alloyed pleasures:Multimetallic cocktails[J]. Current Science, 2003, 85(10):1404-1406.
[33] 李凯. 轻质及含镁高熵合金的微观组织及储氢性能研究[D]. 兰州:兰州理工大学, 2013.
[34] Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys[J]. Journal of Alloys and Compounds, 2015, 652:266-280.
[35] Tong C J, Chen M R, Chen S K, et al. Mechanical performance of the Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005, 36A:1263-1271.
[36] Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science and Engineering:A, 2013, 565:51-62.
[37] Stepanov N D, Yurchenko N Y, Panina E S, et al. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy[J]. Materials Letters, 2017, 188:162-164.
[38] Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters, 2015, 142:153-155.
[39] Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory highentropy alloys[J]. JOM, 2014, 66(10):2030-2042.
[40] Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six highentropy composites[J]. Journal of Alloys and Compounds, 2017, 694:869-876.
[41] Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia, 2014, 68:214-228.
[42] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. Journal of Materials Science, 2012, 47(9):4062-4074.
[43] Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys[J]. Metallurgical and Materials Transactions A, 2018, 49A(3):772-781.
[44] Chen H, Kauffmann A, Gorr B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-CrTi-Al[J]. Journal of Alloys and Compounds, 2016, 661:206-215.
[45] Senkov O N, Woodward C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Materials Science and Engineering:A, 2011, 529:311-320.
[46] Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi highentropy alloy[J]. Materials and Design, 2015, 81:87-94.
[47] Senkov O, Isheim D, Seidman D, et al. Development of a refractory high entropy superalloy[J]. Entropy, 2016, 18(3):102.
[48] Juan C C, Tsai M H, Tsai C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 2015, 62:76-83.
[49] Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Physics, 2018, 210:87-94.
[50] Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics, 2017, 84:153-157.
[51] Roh A, Kim D, Nam S, et al. NbMoTaW refractory high entropy alloy composites strengthened by in-situ metalnon-metal compounds[J]. Journal of Alloys and Compounds, 2020, 822:153423.
[52] Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films:High strength and enhanced fracture toughness[J]. Scripta Materialia, 2019, 168:51-55.
[53] Kim H, Nam S, Roh A, et al. Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80:286-291.
[54] Zhang H, Xu W, Xu Y, et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM):Experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96:461-474.
[55] Senkov O N, Pilchak A L, Semiatin S L. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy[J]. Metallurgical and Materials Transactions A, 2018, 49(7):2876-2892.
[56] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20):6043-6048.
[57] Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters, 2014, 130:277-280.
[58] Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory highentropy alloys[J]. Materials Science and Engineering:A, 2018, 712:380-385.
[59] Pan J, Dai T, Lu T, et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering:A, 2018, 738:362-366.
[60] Li Q, Zhang H, Li D, et al. WxNbMoTa refractory highentropy alloys fabricated by laser cladding deposition[J]. Materials (Basel), 2019, 12(3):533-538.
[61] Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys:Experiments and modeling[J]. Materials Science and Engineering:A, 2016, 674:203-211.
[62] Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working[J]. Journal of Alloys and Compounds, 2015, 649:1110-1123.
[63] Labusch R. A statistical theory of solid solution hardening[J]. Physica Status Solidi B, 1970, 41(2):659-669.
[64] Fleischer R L. Substitutional solution hardening[J]. Acta Metallurgica, 1963, 11(3):203-209.
[65] 王康, 陈宇红, 王鸿业, 等. 高熵合金Mo25Nb25Ta25W25的氧化行为[J]. 特种铸造及有色合金, 2018, 38(6):661-665.
[66] Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Journal of Materials Science, 2012, 47(18):6522-6534.
[67] Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys[J]. Journal of Alloys and Compounds, 2014, 583(3):162-169.
[68] Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metalbased alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition[J]. Journal of Alloys and Compounds, 2016, 688:468-477.
[69] Wang W Y, Shang S L, Wang Y, et al. Atomic and electronic basis for the serrations of refractory high-entropy alloys[J]. NPJ Computational Materials, 2017, 3:1-10.
[70] Wang W Y, Wang J, Lin D Y, et al. Revealing the microstates of body-centered-cubic (BCC) equiatomic high entropy alloys[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(4):404-415.
[71] Wang W Y, Li J S, Liu W M, et al. Integrated computational materials engineering for advanced materials:A brief review[J]. Computational Materials Science, 2019, 158:42-48.
[72] Zhang H L, Sun X, Lu S, et al. Elastic properties of Al x CrMnFeCoNi (0≤ x ≤ 5) high-entropy alloys from ab initio theory[J]. Acta Materialia, 2018, 155:12-22.
[73] Sun X, Zhang H L, Lu S, et al. Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from firstprinciples[J]. Acta Materialia, 2017, 140:366-374.