综述

新型高温高熵合金材料研究进展

  • 梁秀兵 ,
  • 万义兴 ,
  • 莫金勇 ,
  • 张志彬 ,
  • 胡振峰 ,
  • 陈永雄
展开
  • 1. 军事科学院国防科技创新研究院, 北京 100071;
    2. 中国矿业大学材料与物理学院, 徐州 221116
梁秀兵,研究员,研究方向为表面新材料,电子信箱:liangxb_d@163.com;万义兴(共同第一作者),博士研究生,研究方向为高温高熵合金,电子信箱:wanyixing1@163.com

收稿日期: 2019-10-22

  修回日期: 2020-07-19

  网络出版日期: 2021-07-01

基金资助

国家重点研发计划项目(2018YFC1902400),国家自然科学基金项目(51975582)

Research progress in novel high-temperature high entropy alloys

  • LIANG Xiubing ,
  • WAN Yixing ,
  • MO Jinyong ,
  • ZHANG Zhibin ,
  • HU Zhenfeng ,
  • CHEN Yongxiong
Expand
  • 1. National Innovation Institute of Defense Technology, Academy of Military Science, Beijing 100071, China;
    2. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China

Received date: 2019-10-22

  Revised date: 2020-07-19

  Online published: 2021-07-01

摘要

高熵合金是一类新型金属材料,对其研究目前已发展成为涉及材料、物理、化学、力学和计算科学等多学科交叉融合的前沿方向,尤其是近10年来出现的具有高强度、高硬度、高耐磨性、耐高温性、耐腐蚀性等性能特点的高温高熵合金,在推动高温防护领域的材料科学创新发展与工程化应用方面具有重要意义。综合阐述了高温高熵合金材料研究领域取得的一系列科技成果,包括高温高熵合金材料的定义、形成机理、材料体系设计和综合性能等;分析了高温高熵合金材料极端服役环境的复杂性、材料计算设计及其性能的相关性,总结提出高温高熵合金材料研究领域的十大科学问题,为高温高熵合金材料的未来发展提供参考。

本文引用格式

梁秀兵 , 万义兴 , 莫金勇 , 张志彬 , 胡振峰 , 陈永雄 . 新型高温高熵合金材料研究进展[J]. 科技导报, 2021 , 39(11) : 96 -108 . DOI: 10.3981/j.issn.1000-7857.2021.11.011

Abstract

High entropy alloy (HEA) is a novel metallic material that has emerged for 20 years. Its frontier research involves a multidisciplinary fusion of materials science, physics, chemistry, mechanics, and computational science. The high-temperature high entropy alloy, discovered in the last decade, is of great significance in the field of material science innovation development and engineering application. Affected by four effects including high entropy effect, lattice distortion effect, hysteresis diffusion effect, and cocktail effect, the high-temperature HEA has the characteristics of high strength, high hardness, high wear resistance, high-temperature resistance, and corrosion resistance. Herein, a series of recent scientific and technological achievements in high-temperature HEAs are reviewed in terms of definition, formation mechanism, material system design, and overall performance of high-temperature HEAs. Some problems are analyzed. The complexity of the extreme service environment and the correlation between material calculation design and high-temperature HEA performance are pointed out. Top ten scientific problems in the research are summarized. Finally, the future development trend and application prospects of hightemperature HEAs are presented.

参考文献

[1] Yeh J, Chen S, Lin S, et al. Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5):299-303.
[2] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48:279-306.
[3] Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys[J]. Materials Science and Engineering:A, 2004, 375/376/377:213-218.
[4] Ma D, Tan H, Zhang Y, et al. Correlation between glass formation and type of eutectic coupled zone in eutectic alloys[J]. Materials Transactions, 2003, 44(10):2007-2010.
[5] Gorsse S, Nguyen M H, Senkov O N, et al. Database on the mechanical properties of high entropy alloys and complex concentrated alloys[J]. Data in Brief, 2018, 21:2664-2678.
[6] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9):1758-1765.
[7] Soni V, Senkov O N, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy[J]. Scientific Reports, 2018, 8(1):8816.
[8] Senkov O N, Jensen J K, Pilchak A L, et al. Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design, 2018, 139:498-511.
[9] Couzinié J P, Senkov O N, Miracle D B, et al. Comprehensive data compilation on the mechanical properties of refractory high-entropy alloys[J]. Data in Brief, 2018, 21:1622-1641.
[10] Karakose E, Keskin M. Microstructure evolution and mechanical properties of intermetallic Ni-xSi(x=5, 10, 15, 20) alloys[J]. Journal of Alloys and Compounds, 2012, 528:63-69.
[11] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5):698-706.
[12] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122:448-511.
[13] Melnick A B, Soolshenko V K. Thermodynamic design of high-entropy refractory alloys[J]. Journal of Alloys and Compounds, 2017, 694:223-227.
[14] 张勇, 周云军, 陈国良. 快速发展中的高熵溶体合金[J]. 物理, 2008, 37(8):600-605.
[15] Zhang Y, Zhou Y. Solid solution formation criteria for high entropy alloys[J]. Materials Science Forum, 2007, 561/562/563/564/565:1337-1339.
[16] Yeh J W. Recent progress in high-entropy alloys[J]. Annales de Chimie Science des Matériaux, 2006, 31(6):633-648.
[17] Tang Y P, Wang S R, Bin S, et al. Fabrication and wear behavior analysis on AlCrFeNi high entropy alloy coating under dry sliding and oil lubrication test conditions[J]. Surface Review and Letters, 2016, 23(4):1650018.
[18] Lin D, Zhang N, He B, et al. Tribological properties of FeCoCrNiAlB x high-entropy alloys coating prepared by laser cladding[J]. Journal of Iron and Steel Research (International), 2017, 24(2):184-189.
[19] Shun T T, Du Y C. Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy[J]. Journal of Alloys and Compounds, 2009, 478(1/2):269-272.
[20] Zhang Y, Liu Y, Li Y, et al. Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite[J]. Materials Letters, 2016, 174:82-85.
[21] Hu Z H, Zhan Y Z, Zhang G H, et al. Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys[J]. Materials and Design, 2010, 31(3):1599-1602.
[22] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61:1-93.
[23] 梁秀兵, 魏敏, 程江波, 等. 高熵合金新材料的研究进展[J]. 材料工程, 2009(12):75-79.
[24] Guo S, Liu C T. Phase stability in high entropy alloys:formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science-Materials International, 2011, 21(6):433-446.
[25] Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys[J]. Materials Chemistry and Physics, 2012(2/3), 132:233-238.
[26] Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10):103505.
[27] Miracle D B, Miller J D, Senkov O N, et al. Exploration and development of high entropy alloys for structural applications[J]. Entropy, 2014, 16(1):494-525.
[28] Wang Z J, Guo S, Liu C T. Phase selection in high-entropy alloys:From nonequilibrium to equilibrium[J]. JOM, 2014, 66(10):1966-1972.
[29] Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy[J]. Acta Materialia, 2014, 65:85-97.
[30] Ding Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in highentropy alloys[J]. Nature, 2019, 574(7777):223-227.
[31] 张勇. 非晶和高熵合金[M]. 北京:科学出版社, 2010.
[32] Ranganathan S. Alloyed pleasures:Multimetallic cocktails[J]. Current Science, 2003, 85(10):1404-1406.
[33] 李凯. 轻质及含镁高熵合金的微观组织及储氢性能研究[D]. 兰州:兰州理工大学, 2013.
[34] Stepanov N D, Yurchenko N Y, Skibin D V, et al. Structure and mechanical properties of the AlCrxNbTiV (x=0, 0.5, 1, 1.5) high entropy alloys[J]. Journal of Alloys and Compounds, 2015, 652:266-280.
[35] Tong C J, Chen M R, Chen S K, et al. Mechanical performance of the Al xCoCrCuFeNi high-entropy alloy system with multiprincipal elements[J]. Metallurgical and Materials Transactions A, 2005, 36A:1263-1271.
[36] Senkov O N, Senkova S V, Miracle D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science and Engineering:A, 2013, 565:51-62.
[37] Stepanov N D, Yurchenko N Y, Panina E S, et al. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy[J]. Materials Letters, 2017, 188:162-164.
[38] Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Materials Letters, 2015, 142:153-155.
[39] Senkov O N, Woodward C, Miracle D B. Microstructure and properties of aluminum-containing refractory highentropy alloys[J]. JOM, 2014, 66(10):2030-2042.
[40] Liu Y, Zhang Y, Zhang H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six highentropy composites[J]. Journal of Alloys and Compounds, 2017, 694:869-876.
[41] Senkov O N, Senkova S V, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys[J]. Acta Materialia, 2014, 68:214-228.
[42] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy[J]. Journal of Materials Science, 2012, 47(9):4062-4074.
[43] Chen H, Kauffmann A, Laube S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys[J]. Metallurgical and Materials Transactions A, 2018, 49A(3):772-781.
[44] Chen H, Kauffmann A, Gorr B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-CrTi-Al[J]. Journal of Alloys and Compounds, 2016, 661:206-215.
[45] Senkov O N, Woodward C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Materials Science and Engineering:A, 2011, 529:311-320.
[46] Guo N N, Wang L, Luo L S, et al. Microstructure and mechanical properties of refractory MoNbHfZrTi highentropy alloy[J]. Materials and Design, 2015, 81:87-94.
[47] Senkov O, Isheim D, Seidman D, et al. Development of a refractory high entropy superalloy[J]. Entropy, 2016, 18(3):102.
[48] Juan C C, Tsai M H, Tsai C W, et al. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys[J]. Intermetallics, 2015, 62:76-83.
[49] Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials[J]. Materials Chemistry and Physics, 2018, 210:87-94.
[50] Han Z D, Chen N, Zhao S F, et al. Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys[J]. Intermetallics, 2017, 84:153-157.
[51] Roh A, Kim D, Nam S, et al. NbMoTaW refractory high entropy alloy composites strengthened by in-situ metalnon-metal compounds[J]. Journal of Alloys and Compounds, 2020, 822:153423.
[52] Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films:High strength and enhanced fracture toughness[J]. Scripta Materialia, 2019, 168:51-55.
[53] Kim H, Nam S, Roh A, et al. Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80:286-291.
[54] Zhang H, Xu W, Xu Y, et al. The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM):Experiment and simulation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96:461-474.
[55] Senkov O N, Pilchak A L, Semiatin S L. Effect of cold deformation and annealing on the microstructure and tensile properties of a HfNbTaTiZr refractory high entropy alloy[J]. Metallurgical and Materials Transactions A, 2018, 49(7):2876-2892.
[56] Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20):6043-6048.
[57] Wu Y D, Cai Y H, Wang T, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J]. Materials Letters, 2014, 130:277-280.
[58] Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory highentropy alloys[J]. Materials Science and Engineering:A, 2018, 712:380-385.
[59] Pan J, Dai T, Lu T, et al. Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering:A, 2018, 738:362-366.
[60] Li Q, Zhang H, Li D, et al. WxNbMoTa refractory highentropy alloys fabricated by laser cladding deposition[J]. Materials (Basel), 2019, 12(3):533-538.
[61] Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys:Experiments and modeling[J]. Materials Science and Engineering:A, 2016, 674:203-211.
[62] Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working[J]. Journal of Alloys and Compounds, 2015, 649:1110-1123.
[63] Labusch R. A statistical theory of solid solution hardening[J]. Physica Status Solidi B, 1970, 41(2):659-669.
[64] Fleischer R L. Substitutional solution hardening[J]. Acta Metallurgica, 1963, 11(3):203-209.
[65] 王康, 陈宇红, 王鸿业, 等. 高熵合金Mo25Nb25Ta25W25的氧化行为[J]. 特种铸造及有色合金, 2018, 38(6):661-665.
[66] Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Journal of Materials Science, 2012, 47(18):6522-6534.
[67] Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys[J]. Journal of Alloys and Compounds, 2014, 583(3):162-169.
[68] Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metalbased alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition[J]. Journal of Alloys and Compounds, 2016, 688:468-477.
[69] Wang W Y, Shang S L, Wang Y, et al. Atomic and electronic basis for the serrations of refractory high-entropy alloys[J]. NPJ Computational Materials, 2017, 3:1-10.
[70] Wang W Y, Wang J, Lin D Y, et al. Revealing the microstates of body-centered-cubic (BCC) equiatomic high entropy alloys[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(4):404-415.
[71] Wang W Y, Li J S, Liu W M, et al. Integrated computational materials engineering for advanced materials:A brief review[J]. Computational Materials Science, 2019, 158:42-48.
[72] Zhang H L, Sun X, Lu S, et al. Elastic properties of Al x CrMnFeCoNi (0≤ x ≤ 5) high-entropy alloys from ab initio theory[J]. Acta Materialia, 2018, 155:12-22.
[73] Sun X, Zhang H L, Lu S, et al. Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from firstprinciples[J]. Acta Materialia, 2017, 140:366-374.
文章导航

/