[1] 穆作栋, 程文渊, 宋刚. 电推进技术在航空业的应用[J]. 航空科学技术, 2019, 30(11):30-35.
[2] 孙侠生, 程文渊, 穆作栋, 等. 电动飞机发展白皮书[J]. 航空科学技术, 2019, 30(11):1-7.
[3] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22:587-603.
[4] 杨敏. 锂离子电池在航空领域的应用再现曙光[J]. 航空维修与工程, 2017(9):30-32.
[5] 范振伟, 杨凤田, 项松, 等. 我国电动飞机发展现状及建议[J]. 航空科学技术, 2019, 30(11):18-21.
[6] Thomas F, Mills G, Howe R, et al. Lithium battery fires:Implications for air medical transport[J]. AirMed International, 2012, 31(5):242-248.
[7] Williard N, He W, Hendricks C, et al. Lessons learned from the 787 dreamliner issue on LIBs reliability[J]. Energies, 2013, 6(9):4682-4695.
[8] 方谋, 赵骁, 陈敬波, 等. 从波音787电池事故分析大型动力电池组的安全性[J]. 储能科学与技术, 2014, 3(1):42-46.
[9] Wang Q, Mao B, Stoliarov S, et al. A review of lithium ion batteries failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73:95-131.
[10] Golubkov A W. Transport of lithium batteries as cargo via airupdate on recent activity[R]. Atlantic City:International aircraft systems fire protection working group, 2015.
[11] 王淮斌, 杜志明. 低压环境下锂离子电池安全性研究进展[J]. 消防科学与技术, 2019, 38(6):884-890.
[12] 贺元骅, 郭君, 王海斌. 民航锂电池运输热灾害危险特性综述[J]. 民航学报, 2019, 3(3):88-90.
[13] Hannan M A, Hoque M M, Mohamed A, et al. Review of energy storage systems for electric vehicle applications:Issues and challenges[J]. Renewable & Sustainable Energy Reviews, 2017, 69:771-789.
[14] 穆道斌, 谢慧琳, 吴伯荣. 锂离子电池固体电解质的研究与进展[J]. 汽车安全与节能学报, 2020, 11(4):415-427.
[15] Skundin A, Kulova T, Rudy A, et al. All solid state thinfilm lithium-ion batteries:Materials, technology, and diagnostics[M]. Boca Raton:CRC Press, 2021.
[16] Lyu H, Sun X G, Dai S. Organic cathode materials for lithium-ion batteries:Past, present, and future[J]. Advanced Energy and Sustainability Research, 2020, 2:2000044.
[17] 赵经纬, 陈嘉苗, 陆嘉晟, 等. 有机聚合物锂电池正极材料的制备与研究[J]. 江西化工, 2019(6):334-337.
[18] Maleki H, Deng G P, Anani A, et al. Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9):3224-3229.
[19] Macneil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solvents and electrolytes:I. Li0.5CoO2[J]. Journal of the Electrochemical Society, 2001, 148(11):1205-1210.
[20] Richard M, Dahn J. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental[J]. Journal of the Electrochemical Society, 1999, 146(6):2068-2077.
[21] Roth E P, Doughty D H. Thermal abuse performance of high-power 18650 Li-ion cells[J]. Journal of Power Sources, 2004, 128(2):308-318.
[22] Jiang L, Wang Q, Sun J. Electrochemical performance and thermal stability analysis of LiNixCoyMnzO2 cathode based on a composite safety electrolyte[J]. Journal of Hazardous Materials, 2018, 351:260-269.
[23] 秦帅星, 郭超超. 锂离子电池热解气体释放特性研究[J]. 消防科学与技术, 2017, 36(11):1592-1596.
[24] Wang Q, Sun J, Chu G. Lithium ion battery fire and explosion[J]. Fire Safety Journal, 2005, 8:375-382.
[25] 孙强. 低压环境对锂离子电池热灾害扩展特性影响研究[D]. 德阳:中国民用航空飞行学院, 2018.
[26] 郭超超, 张青松. 锂离子电池热解气体爆炸极限测定及其危险性分析[J]. 中国安全生产科学技术, 2016, 12(9):46-49.
[27] 陈明毅. 常压和低压下锂原电池、锂离子电池火灾行为研究[D]. 合肥:中国科学技术大学, 2017.
[28] Chen M Y, Liu J H, He Y P, et al. Study of the fire hazards of lithium-ion batteries at different pressures[J]. Applied Thermal Engineering, 2017, 125:1061-1074.
[29] Chen M Y, Liu J H, Lin X, et al. Combustion characteristics of primary lithium battery at two altitudes[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2):865-870.
[30] Chen M Y, Liu J H, Ouyang D X, et al. Experimental investigation on the effect of ambient pressure on thermal runaway and fire behaviors of lithium-ion batteries[J]. International Journal of Energy Research, 2019, 43(2):1-14.
[31] 沈俊杰, 王海斌, 贺元骅, 等. 低压环境下不同三元圆柱锂电池热失控危险特性对比研究[J]. 中国安全生产科学技术, 2020, 16(6):110-115.
[32] 刘奕, 张旭, 陈现涛, 等. 不同压力下软包装锂离子电池的热失控研究[J]. 电池, 2020, 50(3):237-241.
[33] Xie S, Ren L X, Yang X Y, et al. Influence of cycling aging and ambient pressure on the thermal safety features of lithium-ion battery[J]. Journal of Power Sources, 2020, 448:227425.
[34] Xie S, Ren L, Gong Y, et al. Effect of charging/discharging rate on the thermal runaway characteristics of lithium-ion batteries in low pressure[J]. Journal of the Electrochemical Society, 2020, 167(14):140503.
[35] Chen M Y, Ouyang D X, Weng J W, et al. Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge[J]. Process Safety and Environmental Protection, 2019, 130:250-256.
[36] 付阳阳. 典型锂离子电池和电解液燃烧特性及航空运输环境对其影响机制研究[D]. 合肥:中国科学技术大学, 2017.
[37] Fu Y Y, Song L, Long S, et al. Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure[J]. Energy, 2018, 161:38-45.
[38] Xie S, Sun J, Chen X T, et al. Thermal runaway behavior of lithium-ion batteries in different charging states under low pressure[J/OL]. International Journal of Energy Research, 2020, https://doi.org/10.1002/er.6200.
[39] 贺元骅, 王春晓, 王耀帅, 等. 低压环境下18650型锂离子电池热失控特性[J]. 科学技术与工程, 2019, 19(8):310-314.
[40] 胡棋威. 锂离子电池热失控传播特性及阻断技术研究[D]. 北京:中国舰船研究院, 2015.
[41] 向硕凌, 王春晓, 孙强, 等. 常压及巡航低压环境下锂离子电池热失控特性[J]. 消防科学与技术, 2019, 38(8):1164-1166.
[42] Steve S, Thomas M. Propagation of lithium battery fire in an inert environment[R]. Atlantic City, NJ:Federal Aviation Administration, 2014.
[43] 刘全义, 韩旭, 孙中正, 等. 不同环境体系下锂离子电池热失控特性实验研究[J]. 安全, 2019, 40(4):42-46.
[44] 邓志彬, 韩旭, 刘全义, 等. 不同体系中18650型锂离子电池热失控传播过程研究[J]. 消防科学与技术, 2018, 37(2):246-249.
[45] 邓志彬, 孙强, 贺元骅. 18650型锂离子电池热失控火灾扩展触发条件研究[J]. 消防科学与技术, 2018, 37(5):690-693.
[46] Somandepalli V, Marr K, Horn Q. Quantification of combustion hazards of thermal runaway failures in lithiumion battery[J]. SAE International Journal of Alternative Powertrains, 2014, 3(1):98-104.
[47] 郭君, 贺元骅, 王海斌, 等. 热失控下环境体系对锂离子电池火灾危险性的影响[J]. 消防科学与技术, 2020, 39(8):1160-1164.
[48] 朱蕾, 荆海晓, 乔雪, 等. 低温条件下锂离子电池电、热性能研究[J]. 汽车实用技术, 2019(18):42-44.
[49] Ouyang D X, He Y P, Weng J W, et al. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material[J]. RSC Advances, 2019, 9(16):9053-9066.
[50] Ouyang D X, Hu J Y, Chen M Y, et al. Effects of abusive temperature environment and cycle rate on the homogeneity of lithium-ion battery[J]. Thermochimica Acta, 2019, 676:241-248.
[51] Chen X T, Wang C X, Sun Q, et al. Study on thermomechanical coupling characteristics of embedded sensor lithium batteries under low-temperature environment[J]. Energy Storage, 2020, 2:e107.
[52] 张青松, 白伟. 冷链航空运输中锂锰电池安全性的影响因素[J]. 消防科学与技术, 2018, 37(6):813-816.