党为科技创新指明方向

铁基超导实验研究与中国超导研究展望

  • 闻海虎
展开
  • 南京大学超导物理和材料研究中心, 南京 210093
闻海虎,南京大学教授、超导物理和材料研究中心主任。曾获得国家自然科学一等奖(2013年,第4完成人)和自然科学二等奖(2004年,第1完成人)各一项。主要研究方向为新型超导材料的探索合成、高温超导体材料物理性质、高温超导机理和超导体磁通动力学。

收稿日期: 2021-06-08

  修回日期: 2021-06-11

  网络出版日期: 2021-08-11

基金资助

国家重点研发计划专项(2016YFA0300401);国家自然科学基金项目(NSFC-DFG12061131001,11927809)

Experimental investigation of iron based superconductors and perspective of the superconductivity study in China

  • WEN Haihu
Expand
  • Center for Superconducting Physics and Materials, Nanjing University, Nanjing 210093, China

Received date: 2021-06-08

  Revised date: 2021-06-11

  Online published: 2021-08-11

摘要

超导是电子在固体物质中发生的一类神奇的量子凝聚现象,具有丰富的量子力学内涵和重要的应用前景。超导体表现出零电阻、完全抗磁性、宏观量子相干等奇异特性,可广泛用于能源、信息、交通、医疗、国防、重大科学工程等方面。回顾了铁基超导体发现历程,以及中国科学家在其中扮演的重要角色。铁基超导的发现是中国超导基础研究的重要转折点,不仅引起了国际学术界高度和广泛的关注,而且从此中国学者在国际超导研究的众多方向起到了引领的作用。

本文引用格式

闻海虎 . 铁基超导实验研究与中国超导研究展望[J]. 科技导报, 2021 , 39(12) : 90 -94 . DOI: 10.3981/j.issn.1000-7857.2021.12.011

Abstract

Superconductivity is a novel phenomenon caused by the quantum condensation of large number of electrons in solid state materials, and it involves rich physics principles, including the quantum mechanics and with many potential applications. Superconductors enjoy properties of zero resistivity, perfect diamagnetism and macroscopic quantum phase coherence. Superconductivity can be applied in energy industry, communication, transport, medication, defense and large scale scientific equipment. The discovery of iron based superconductors is a typical example, where Chinese scientists have played essential roles. This can be said as a turning point of researches of superconductivity by Chinese scientists in the field of superconductivity. Since then the Chinese scientists have made many outstanding achievements in this field, furthermore, in many sub-directions of the field, they are gradually playing leading roles.

参考文献

[1] Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26 K[J]. Journal of the American Chemical Society, 2008, 130(11):3296-3297.
[2] Zhu W J, Huang Y S, Dong C, et al. Synthesis and crystal structure of new rare-earth copper oxyselenides:RCuSeO (R=La, Sm, Gd and Y)[J]. Materials Research Bulletin, 1994, 29(2):143-147.
[3] Quebe P, Terbüchte L J, Jeitschko W. Quaternary rare earth transition metal arsenide oxides RTAsO (T=Fe, Ru, Co) with ZrCuSiAs type structure[J]. Journal of Alloys and Compounds, 2000, 302(1):70-74.
[4] Chen X H, Wu T, Wu G, et al. Superconductivity at 43 K in SmFeAsO1-xFx[J]. Nature, 2008, 453(7196):761-762.
[5] Chen G F, Li Z, Wu D, et al. Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs[J]. Physical Review Letters, 2008, 100(24):247002.
[6] Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs[J]. Chinese Physics Letters, 2008, 25(6):2215-2216.
[7] Yang J, Shen X L, Lu W, et al. Superconductivity in some heavy rare-earth iron arsenide REFeAsO1-δ(RE=Ho, Y, Dy and Tb) compounds[J]. New Journal of Physics, 2009, 11(2):025005.
[8] Wen H H, Mu G M, Fang L, et al. Superconductivity at 25 K in hole-doped (La1-xSrx)OFeAs[J]. Europhysics Letters, 2008, 82(1):17009.
[9] Wang C, Li L, Chi S, et al. Thorium-doping-induced superconductivity up to 56 K in Gd1-xThxFeAsO[J]. Europhysics Letters, 2008, 83(6):67006.
[10] Wang X F, Wu T, Wu G, et al. Anisotropy in the electrical resistivity and susceptibility of superconducting BaFe2As2 single crystals[J]. Physical Review Letters, 2009, 102(11):117005.
[11] Jia Y, Cheng P, Fang L, et al. Critical fields and anisotropy of NdFeAsO0.82F0.18 single crystals[J]. Applied Physics Letters, 2008, 93(3):032503.
[12] Liu R H, Wu T, Wu G, et al. A large iron isotope effect in SmFeAsO1-xFx and Ba1-xKxFe2As2[J]. Nature, 2009, 459(7243):64-67.
[13] Dong J, Zhang H J, Xu G, et al. Competing orders and spin-density-wave instability in La(O1-xFx)FeAs[J]. Europhysics Letters, 2008, 83(2):27006.
[14] Cho A. New superconductors propel Chinese physicists to forefront[J]. Science, 2008, 320(5875):432-433.
[15] Guo J, Jin S, Wang G, et al. Superconductivity in the iron selenide KxFe2Se2(0≤ x ≤ 1.0)[J]. Physical Review B, 2010, 82(18):180520.
[16] Fang M H, Wang H D, Dong C H, et al. Fe-based superconductivity with Tc=31 K bordering an antiferromagnetic insulator in (Tl, K)FexSe2[J]. Europhysics Letters, 2011, 94(2):27009.
[17] Zhu X, Han F, Mu G, et al. Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K[J]. Physical Review B, 2009, 79(22):1377-1381.
[18] Liu Y, Liu Y B, Chen Q, et al. A new ferromagnetic superconductor:CsEuFe4As4[J]. Science Bulletin, 2016, 61(15):1213-1220.
[19] Wang Z C, He C Y, Wu S Q, et al. Superconductivity in KCa2Fe4As4F2 with separate double Fe2As2 layers[J]. Journal of the American Chemical Society, 2016, 138(25):7856-7859.
[20] Wang Q Y, Li Z, Zhang W H, et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3[J]. Chinese Physics Letters, 2012, 29(3):037402.
[21] Zhang W, Sun Y, Zhang J, et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films[J]. Chinese Physics Letters, 2014, 31(1):017401.
[22] Lu X F, Wang N Z, Wu H, et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe[J]. Nature Materials, 2015, 14(3):325-329.
[23] Shi M Z, Wang N Z, Lei B, et al. Organic-ion-intercalated FeSe-based superconductors[J]. Physics Review Materials, 2018, 2(7):074801.
[24] Zhang Y, Yang L X, Xu M, et al. Nodeless superconducting gap in AxFe2Se2(A=K,Cs) revealed by angle-resolved photoemission spectroscopy[J]. Nature Materials, 2011,10(4):273-277.
[25] Ding H, Richard P, Nakayama K, et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2[J]. Europhysics Letters, 2008, 83(4):47001.
[26] Zhao L, Liu H W, Zhang W T, et al. Multiple nodeless superconducting gaps in (Ba0:6K0:4)Fe2As2 superconductor from angle-resolved photoemission spectroscopy[J]. Chinese Physics Letters, 2008, 25(12):4402.
[27] Hao N, Hu J. Topological phases in the single-layer FeSe[J]. Physical Review X, 2014, 4(3):031053.
[28] Zhu S, Kong L, Cao L, et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor[J]. Science, 2020, 367(6474):189-192.
[29] Liu Q, Chen C, Zhang T, et al. Robust and clean majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe[J]. Physical Review X, 2018, 8(4), 041056.
[30] Song Q, Yu T L, Lou X, et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface[J]. Nature Communications, 2019, 10:758.
[31] Xu Y, Rong H, Wang Q, et al. Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films[J]. Nature Communications, 2021, 12:2840.
[32] Gao Z S, Wang L, Qi Y P, et al. Superconducting properties of granular SmFeAsO1-xFx wires with Tc=52 K prepared by the powder-in-tube method[J]. Superconductor Science and Technology, 2008, 21(11):112001.
[33] Zhang X, Oguro H, Yao C, et al. Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake Coils[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4):7300705.
[34] Wang D L, Zhang Z, Zhang X P, et al. First performance test of a 30 mm iron-based superconductor single pancake coil under a 24 T background field[J], Superconductor Science and Technology, 2019, 32(4), 04LT01.
文章导航

/