碳化硅电力电子器件已经成为国内外研究和产业化热点,在一些应用领域正在逐步取代硅基电力电子器件。概述了碳化硅材料和器件的特性,即具有高工作电压、高效率、高工作温度等优势。综述了国际上碳化硅电力电子器件技术的发展现状,其中中低压器件发展已逐渐成熟,高击穿电压器件研究成果展现出由碳化硅材料特性预测的性能优势。展示了宽禁带半导体电力电子器件国家重点实验室在该领域取得的最新技术进展,建立了600~3300 V碳化硅肖特基二极管和MOSFET产品技术,研制出国际先进水平的高压碳化硅MOS-FET和IGBT。
The SiC power devices are replacing the silicon-based devices in more and more applications, and becoming a research focus. The SiC device technologies have matured in recent years, and the advantages in performance over the Si device are demonstrated in this paper. The development of the high-voltage SiC power devices and some of the latest progresses are discussed.
[1] Iwamuro N, Laska T. IGBT history, state-of-the-art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3):741-752.
[2] 郝跃. 宽禁带与超宽禁带半导体器件新进展[J]. 科技导报, 2019, 37(3):58-61.
[3] Rupp R, Gerlach R, Kabakow A, et al. Avalanche behaviour and its temperature dependence of commercial SiC MPS diodes:Influence of design and voltage class[C]. 2014 IEEE 26th International Symposium on Power Semiconductor Devices Devices & IC's. Piscataway, NJ:IEEE, 2014:67-70.
[4] Rupp R, Elpelt R, Gerlach R, et al. A new SiC diode with significantly reduced threshold voltage[C]. 201729th International Symposium on Power Semiconductor Devices and IC's. Piscataway, NJ:IEEE, 2017:355-358.
[5] Thoma J, Kolb S, Salzmann C, et al. Characterization of high-voltage-SiC-devices with 15 kV blocking voltage[C]//IEEE International Power Electronics and Motion Control Conference (PEMC). Piscataway, NJ:IEEE, 2016:946-951.
[6] She X, Huang Q, Lucía Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10):8193-8205.
[7] Nakamura R, Nakano Y, Aketa M, et al. 1200V 4H-SiC trench devices[C]. PCIM Europe, 2014:441-447.
[8] Palmour J W, Cheng L, Pala V, et al. Silicon carbide power MOSFETs:Breakthrough performance from 900 V up to 15 kV[C]//2014 IEEE 26th International Symposium on Power Semiconductor Devices Devices & IC's. Piscataway, NJ:IEEE, 2014:79-82.
[9] Fukuda K, Okamoto D, Okamoto M, et al. Development of ultrahigh-voltage SiC devices[J]. IEEE Transactions on Electron Devices, 2015, 62(2):396-404.
[10] Ryu S, Capell C, Cheng L, et al. Ultra high voltage (>12 kV), high performance 4H-SiC IGBTs[C]. 201224th International Symposium on Power Semiconductor Devices and ICs. Piscataway, NJ:IEEE, 2012:257-260.
[11] Ryu S, Capell C, Jonas C, et al. Ultra high voltage IGBTs in 4H-SiC[C]//Wide Bandgap Power Devices & Applications. Piscataway, NJ:2013:36-39.
[12] Brunt V, Cheng L, O'Loughlin M, et al. 22 kV, 1 cm, 4H-SiC n-IGBTs with improved conductivity modulation[C]. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's. Piscataway, NJ:IEEE, 2014:358-361.
[13] Brunt V, Cheng L, O'Loughlin M, et al. 27 kV, 20 A 4H-SiC n-IGBTs[J]. Materials Science Forum, 2015, 821-823:847-850.
[14] Huang R, Tao Y H, Bai S, et al. Design and fabrication of 1.2 kV 4H-SiC DMOSFETs[C]//13th China International Forum on Solid State Lighting:International Forum on Wide Bandgap Semiconductors China (SSLChina:IFWS). Piscataway, NJ:IEEE, 2016:16-18.
[15] Fei C, Bai S, Wang Q, et al. Influences of pre-oxidation nitrogen implantation and post-oxidation annealing on channel mobility of 4H-SiC MOSFETs[J]. Journal of Crystal Growth, 2020, 531(125338):1-6.
[16] Yang X L, Tao Y H, Yang T T, et al. Fabrication of 4HSiC n-channel IGBTs with ultra high blocking voltage[J]. Journal of Semiconductors, 2018, 39(3):034005-1-034005-3.