研究论文

基于SLAF-seq玉米高密度遗传连锁图谱构建与株型性状QTL定位

  • 薛春雷 ,
  • 吴慧 ,
  • 逯晓萍 ,
  • 韩平安 ,
  • 孙峰成 ,
  • 张来厚
展开
  • 1. 内蒙古农业大学农学院, 呼和浩特 010018;
    2. 内蒙古自治区农牧业科学院玉米研究所, 呼和浩特 010031;
    3. 和林格尔县农业综合开发技术研究评审中心, 呼和浩特 011500
薛春雷,博士研究生,研究方向为玉米遗传育种,电子信箱:xcl13474717283@163.com

收稿日期: 2020-11-06

  修回日期: 2021-04-19

  网络出版日期: 2021-09-07

基金资助

内蒙古自治区科技计划项目(20131410,2020GG0136);内蒙古农牧业科学院青年创新基金项目(2020QNJJNO6);内蒙古农牧业创新基金项目(2020CXJJN01)

Construction of high-density genetic linkage map of maize based on SlAF-seq and QTL mapping of plant architecture traits

  • XUE Chunlei ,
  • WU Hui ,
  • LU Xiaoping ,
  • HAN Pingan ,
  • SUN Fengcheng ,
  • ZHANG Laihou
Expand
  • 1. Agricultural College, Inner Mongolia Agricultural University, Hohhot 010018, China;
    2. Maize Research Institute, Inner Mongolia Academy of Agricultural&Animal Husbandry Sciences, Hohhot 010031, China;
    3. Agricultural Comprehensive Development Technical Research and Evaluation Center of Helingeer County, Hohhot 011500, China

Received date: 2020-11-06

  Revised date: 2021-04-19

  Online published: 2021-09-07

摘要

株型直接决定生物产量、种植密度与籽粒产量,利用玉米高密度遗传连锁图谱解析株型相关性状的遗传机制,对选育理想株型玉米新品种具有重要意义。本研究利用SLAF-seq技术,依据玉米黄早四参考基因组信息,对昌7-2与PHB1M及其138个F2:3家系高通量测序,开发高密度SNP的遗传图谱,并进行株型相关性状QTL定位。研究结果构建了一张总图距为1354.81 cM,标记间的平均距离为0.32 cM,标记数为4220个SLAF标签(7876个SNP)的高密度遗传图谱。在E1与E2两种密度下,对株高、穗位、叶片数、节间数、平均节间长进行QTL定位,共检测到10个QTL位点,其中,有7个PVE超过了10%。叶片数、穗位、节间数为主效QTL,ADD为负值,叶片数与节间数的减效等位基因来源于PHB1M,穗位的减效等位基因来源于昌7-2。叶片数与节间数在2个密度下均定位在8号染色体上,说明二者之间有着共同的遗传机制。与QTL关联的SLAF标记共有61个,其中,SLFA7305498和SLFA6717271为qLC-2-LG8与qIC-2-LG8共有标记。该研究将为玉米株型相关性状的标记辅助选择提供支撑。

本文引用格式

薛春雷 , 吴慧 , 逯晓萍 , 韩平安 , 孙峰成 , 张来厚 . 基于SLAF-seq玉米高密度遗传连锁图谱构建与株型性状QTL定位[J]. 科技导报, 2021 , 39(14) : 144 -154 . DOI: 10.3981/j.issn.1000-7857.2021.14.014

Abstract

The plant architecture directly determines the biological yield, the planting density and the grain yield. The genetic mechanisms of the plant architecture related traits are analyzed in this paper by using the high-density genetic linkage map of the maize. This map is of great significance for breeding new maize varieties of ideal plant type. To develop high-throughput SNP markers for the high quality map from Chang 7-2×PHB1M, and the map QTL of the plant type related traits, 2 parents and 138 individuals of their F2:3 population are detected by the SLAF-seq technology. The results are used to construct a highdensity genetic map with a total distance of 1354.81 cM, an average distance of 0.32 cM between markers, and with 4220 SLAF (7876 SNPS) as markers. With the densities of E1 and E2, QTL is mapped for the plant height, the ear height, the leaf count, the internode count and the average internode length. A total of 10 QTLs are detected, and the PVE of 7 QTLs exceeds 10%. The leaf count, the ear height and the internode number are the major QTLs and the ADD is negative. The decreasing effect alleles of the leaf count and the internode count are from PHB1M, and the ear height is from Chang 7-2. The leaf count and the internode count are located on the chromosome 8 at both densities, showing that they have a common genetic mechanism. There are a total of 61 SLAF markers associated with the QTL, among which SLFA7305498 and SLFA6717271 are the common markers of qLC- 2-LG8 and qIC-2-LG8. This study provides a support for the marker-assisted selection of the plant architecture traits.

参考文献

[1] Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement[J]. Plant Biotechnology Journal, 2016, 14(10):1941-1955.
[2] Zhang J, Zhang Q, Cheng T, et al. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc)[J]. DNA Research, 2015, 22(3):183-91.
[3] Lucito R, Nakimura M, West J A, et al. Genetic analysis using genomic representations[J]. PNAS, 1998, 95(8):4487-92.
[4] van Tassell C P, Smith T P, Matukumalli L K, et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries[J]. Nat Methods, 2008, 5(3):247-52.
[5] Baxter S W, Davey J W, Johnston J S, et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism[J]. PLoS One, 2011, 6(4):e19315.
[6] Poland J A, Brown P J, Sorrells M E, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach[J]. PloS One, 2012, 7(2):e32253.
[7] Sun X, Liu D, Zhang X, et al. SLAF-seq:An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3):e58700.
[8] Pan Q, Xu Y, Li K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations[J]. Plant Physiology, 2017, 175(2):858-873.
[9] Zhou Z, Zhang C, Lu X, et al. Dissecting the genetic basis underlying combining ability of plant height related traits in maize[J]. Frontiers in Plant Science, 2018, 9:1117.
[10] Li Z Q, Zhang H M, Wu X P, et al. Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population[J]. Genetics and Molecular Research, 2014, 13(1):450-456.
[11] Zheng Z P, Liu X H. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize[J]. Genetics and Molecular Research, 2013, 12(2):1243-53.
[12] Ku L X, Zhang L K, Tian Z Q, et al. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.)[J]. Molecular Genetics & Genomic Medicine, 2015, 290(4):1223-1233.
[13] 李丹. 玉米叶片数遗传结构的解析及目标QTL的克隆[D]. 北京:中国农业大学, 2015.
[14] Zhou Z, Zhang C, Zhou Y, et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines[J]. BMC Genomics, 2016, 17:178.
[15] 张世煌. 两个杂种优势列[J]. 种子科技, 2015, 33(8):6-7.
[16] Peiffer J A, Romay M C, Gore M A, et al. The genetic architecture of maize height[J]. Genetics, 2014, 196(4):1337-1356.
[17] Li D, Wang X, Zhang X, et al. The genetic architecture of leaf number and its genetic relationship to flowering time in maize[J]. New Phytologist, 2016, 210(1):256-268.
[18] 郭海平, 孙高阳, 张晓祥, 等. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(4):522-532.
[19] 崔俊明, 赵博, 孙本栋, 等. YW-S血缘玉米自交系昌7-2的选育及应用[J]. 杂粮作物, 2003(4):187-191.
[20] 堵纯信, 曹春景, 曹青, 等. 玉米杂交种郑单958的选育与应用[J]. 玉米科学, 2006(6):43-45, 49.
[21] 张世煌. 郑单958带给我们的创新思路和发展机遇[J]. 玉米科学, 2006(6):4-6.
[22] 李潮海, 赵亚丽, 王小星, 等. 玉米昌7-2近缘系遗传多样性及其配合力分析[J]. 河南农业大学学报, 2008(2):150-154.
[23] 孙贵星, 任雪娇, 杨巍, 等. 玉米"昌7-2" 遗传改良系及其组配杂交种的耐密性分析[J]. 吉林农业大学学报, 2015, 37(2):141-147, 165.
[24] 王元东, 赵久然, 张华生, 等."黄欧" 系列玉米自交系宜机械粒收特征特性研究[J]. 植物遗传资源学报, 2019, 20(6):1554-1565.
[25] 李璐璐, 明博, 谢瑞芝, 等. 玉米品种穗部性状差异及其对籽粒脱水的影响[J]. 中国农业科学, 2018, 51(10):1855-1867.
[26] 王楠, 李穆, 路明, 等. 美国先锋公司玉米品种在我国的应用分析[J]. 作物杂志, 2019(4):24-29.
[27] Li C, Song W, Luo Y, et al. The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize[J]. Molecular Plant, 2019, 12(3):402-409.
[28] 高凤云, 斯钦巴特尔, 张辉, 等. 基于SLAF-seq技术构建亚麻高密度遗传图谱[J]. 中国油料作物学报, 2017, 39(3):334-341.
[29] Li R, Li Y, Kristiansen K, et al. SOAP:Short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5):713-714.
[30] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping[J]. Genetics, 1994, 138(3):963-971.
[31] 席先梅. 基于导入系群体玉米遗传图谱构建及重要农艺性状QTL定位[D]. 呼和浩特:内蒙古农业大学, 2018.
[32] Davey J W, Hohenlohe P A, Etter P D, et al. Genomewide genetic marker discovery and genotyping using next-generation sequencing[J]. Nature Reviews Genetics, 2011, 12:499-510.
[33] Liu C, Zhou Q, Dong L, et al. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing[J]. BMC Genomics, 2016, 17(1):915.
[34] Wu X, Feng F, Zhu Y, et al. Construction of high-density genetic map and identification of QTLs associated with seed vigor after exposure to artificial aging conditions in sweet corn using SLAF-seq[J]. Genes (Basel), 2019, 11(1):37.
[35] 杨钊钊, 李永祥, 刘成, 等. 基于多个相关群体的玉米雄穗相关性状QTL分析[J]. 作物学报, 2012, 38(8):1435-1442.
[36] Li C, Li Y, Bradbury P J, et al. Construction of highquality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize[J]. BMC Biology, 2015, 13:78.
[37] 李清超, 李永祥, 杨钊钊, 等. 基于多重相关RIL群体的玉米株高和穗位高QTL定位[J]. 作物学报, 2013, 39(9):1521-1529.
[38] Li Y X, Li C, Bradbury P J, et al. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population[J]. Plant Journal, 2016, 86(5):391-402.
[39] Li C, Sun B, Li Y, et al. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations[J]. BMC Genomics, 2016, 17(1):894.
[40] 李永祥, 李春辉, 杨俊品, 等. 中国玉米骨干亲本黄早四杂种优势形成的遗传基础解析[J]. 中国农业科学, 2020, 53(20):4113-4126.
[41] 阮成江, 何祯祥, 钦佩. 中国植物遗传连锁图谱构建研究进展[J]. 西北植物学报, 2002(6):246-256.
[42] Lu Y, Shah T, Hao Z, et al. Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize[J]. PLoS One, 2011, 6(9):e24861.
[43] 徐云碧. 分子植物育种[M].北京:科学出版社, 2014:292-293.
[44] 佟屏亚. 横亘20年郑单958依然市场唱主角[J]. 种子科技, 2020, 38(21):1-2.
[45] 尚玘玘, 张德贵, 王凯欣, 等. 我国玉米自交系茎秆性状多样性分析[J]. 植物遗传资源学报, 2020, 21(2):321-329.
文章导航

/