[1] Zou C, Wang P, Xu Y. Bulked sample analysis in genetics, genomics and crop improvement[J]. Plant Biotechnology Journal, 2016, 14(10):1941-1955.
[2] Zhang J, Zhang Q, Cheng T, et al. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc)[J]. DNA Research, 2015, 22(3):183-91.
[3] Lucito R, Nakimura M, West J A, et al. Genetic analysis using genomic representations[J]. PNAS, 1998, 95(8):4487-92.
[4] van Tassell C P, Smith T P, Matukumalli L K, et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries[J]. Nat Methods, 2008, 5(3):247-52.
[5] Baxter S W, Davey J W, Johnston J S, et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism[J]. PLoS One, 2011, 6(4):e19315.
[6] Poland J A, Brown P J, Sorrells M E, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach[J]. PloS One, 2012, 7(2):e32253.
[7] Sun X, Liu D, Zhang X, et al. SLAF-seq:An efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing[J]. PLoS One, 2013, 8(3):e58700.
[8] Pan Q, Xu Y, Li K, et al. The genetic basis of plant architecture in 10 maize recombinant inbred line populations[J]. Plant Physiology, 2017, 175(2):858-873.
[9] Zhou Z, Zhang C, Lu X, et al. Dissecting the genetic basis underlying combining ability of plant height related traits in maize[J]. Frontiers in Plant Science, 2018, 9:1117.
[10] Li Z Q, Zhang H M, Wu X P, et al. Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population[J]. Genetics and Molecular Research, 2014, 13(1):450-456.
[11] Zheng Z P, Liu X H. Genetic analysis of agronomic traits associated with plant architecture by QTL mapping in maize[J]. Genetics and Molecular Research, 2013, 12(2):1243-53.
[12] Ku L X, Zhang L K, Tian Z Q, et al. Dissection of the genetic architecture underlying the plant density response by mapping plant height-related traits in maize (Zea mays L.)[J]. Molecular Genetics & Genomic Medicine, 2015, 290(4):1223-1233.
[13] 李丹. 玉米叶片数遗传结构的解析及目标QTL的克隆[D]. 北京:中国农业大学, 2015.
[14] Zhou Z, Zhang C, Zhou Y, et al. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines[J]. BMC Genomics, 2016, 17:178.
[15] 张世煌. 两个杂种优势列[J]. 种子科技, 2015, 33(8):6-7.
[16] Peiffer J A, Romay M C, Gore M A, et al. The genetic architecture of maize height[J]. Genetics, 2014, 196(4):1337-1356.
[17] Li D, Wang X, Zhang X, et al. The genetic architecture of leaf number and its genetic relationship to flowering time in maize[J]. New Phytologist, 2016, 210(1):256-268.
[18] 郭海平, 孙高阳, 张晓祥, 等. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(4):522-532.
[19] 崔俊明, 赵博, 孙本栋, 等. YW-S血缘玉米自交系昌7-2的选育及应用[J]. 杂粮作物, 2003(4):187-191.
[20] 堵纯信, 曹春景, 曹青, 等. 玉米杂交种郑单958的选育与应用[J]. 玉米科学, 2006(6):43-45, 49.
[21] 张世煌. 郑单958带给我们的创新思路和发展机遇[J]. 玉米科学, 2006(6):4-6.
[22] 李潮海, 赵亚丽, 王小星, 等. 玉米昌7-2近缘系遗传多样性及其配合力分析[J]. 河南农业大学学报, 2008(2):150-154.
[23] 孙贵星, 任雪娇, 杨巍, 等. 玉米"昌7-2" 遗传改良系及其组配杂交种的耐密性分析[J]. 吉林农业大学学报, 2015, 37(2):141-147, 165.
[24] 王元东, 赵久然, 张华生, 等."黄欧" 系列玉米自交系宜机械粒收特征特性研究[J]. 植物遗传资源学报, 2019, 20(6):1554-1565.
[25] 李璐璐, 明博, 谢瑞芝, 等. 玉米品种穗部性状差异及其对籽粒脱水的影响[J]. 中国农业科学, 2018, 51(10):1855-1867.
[26] 王楠, 李穆, 路明, 等. 美国先锋公司玉米品种在我国的应用分析[J]. 作物杂志, 2019(4):24-29.
[27] Li C, Song W, Luo Y, et al. The HuangZaoSi maize genome provides insights into genomic variation and improvement history of maize[J]. Molecular Plant, 2019, 12(3):402-409.
[28] 高凤云, 斯钦巴特尔, 张辉, 等. 基于SLAF-seq技术构建亚麻高密度遗传图谱[J]. 中国油料作物学报, 2017, 39(3):334-341.
[29] Li R, Li Y, Kristiansen K, et al. SOAP:Short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5):713-714.
[30] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping[J]. Genetics, 1994, 138(3):963-971.
[31] 席先梅. 基于导入系群体玉米遗传图谱构建及重要农艺性状QTL定位[D]. 呼和浩特:内蒙古农业大学, 2018.
[32] Davey J W, Hohenlohe P A, Etter P D, et al. Genomewide genetic marker discovery and genotyping using next-generation sequencing[J]. Nature Reviews Genetics, 2011, 12:499-510.
[33] Liu C, Zhou Q, Dong L, et al. Genetic architecture of the maize kernel row number revealed by combining QTL mapping using a high-density genetic map and bulked segregant RNA sequencing[J]. BMC Genomics, 2016, 17(1):915.
[34] Wu X, Feng F, Zhu Y, et al. Construction of high-density genetic map and identification of QTLs associated with seed vigor after exposure to artificial aging conditions in sweet corn using SLAF-seq[J]. Genes (Basel), 2019, 11(1):37.
[35] 杨钊钊, 李永祥, 刘成, 等. 基于多个相关群体的玉米雄穗相关性状QTL分析[J]. 作物学报, 2012, 38(8):1435-1442.
[36] Li C, Li Y, Bradbury P J, et al. Construction of highquality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize[J]. BMC Biology, 2015, 13:78.
[37] 李清超, 李永祥, 杨钊钊, 等. 基于多重相关RIL群体的玉米株高和穗位高QTL定位[J]. 作物学报, 2013, 39(9):1521-1529.
[38] Li Y X, Li C, Bradbury P J, et al. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population[J]. Plant Journal, 2016, 86(5):391-402.
[39] Li C, Sun B, Li Y, et al. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations[J]. BMC Genomics, 2016, 17(1):894.
[40] 李永祥, 李春辉, 杨俊品, 等. 中国玉米骨干亲本黄早四杂种优势形成的遗传基础解析[J]. 中国农业科学, 2020, 53(20):4113-4126.
[41] 阮成江, 何祯祥, 钦佩. 中国植物遗传连锁图谱构建研究进展[J]. 西北植物学报, 2002(6):246-256.
[42] Lu Y, Shah T, Hao Z, et al. Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize[J]. PLoS One, 2011, 6(9):e24861.
[43] 徐云碧. 分子植物育种[M].北京:科学出版社, 2014:292-293.
[44] 佟屏亚. 横亘20年郑单958依然市场唱主角[J]. 种子科技, 2020, 38(21):1-2.
[45] 尚玘玘, 张德贵, 王凯欣, 等. 我国玉米自交系茎秆性状多样性分析[J]. 植物遗传资源学报, 2020, 21(2):321-329.