[1] 周志华. 机器学习[M]. 清华大学出版社, 2016.
[2] Mjolsness E, DeCoste D. Machine learning for science:State of the art and future prospects[J]. Science, 2001, 293(5537):2051-2055.
[3] 刘颖. 基于半监督集成支持向量机的土地覆盖遥感分类方法研究[D]. 中国科学院研究生院(东北地理与农业生态研究所), 2013.
[4] 杨晨. 基于机器学习的土地覆盖遥感信息提取方法研究[D]. 吉林大学, 2010.
[5] Géron A. Hands-on machine learning with scikit-learn, keras, and tensorFlow:Concepts, tools, and techniques to build intelligent systems[M]. O'Reilly Media, 2019.
[6] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
[7] 刘毅, 杜培军, 郑辉, et al. 基于随机森林的国产小卫星遥感影像分类研究[J]. 测绘科学, 2012, 37(4):194-196.
[8] Lowe B, Kulkarni A. Multispectral image analysis using random forest[J]. 2015.
[9] Rodriguez-Galiano VF, Ghimire B, Rogan J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 67:93-104.
[10] 刘海娟. 基于RF模型的高分辨率遥感影像分类评价[J]. 南京林业大学学报:自然科学版, 2015, (39):99-103.
[11] Ghimire B, Rogan J, Miller J. Contextual land-cover classification:Incorporating spatial dependence in landcover classification models using random forests and the Getis statistic[J]. Remote Sensing Letters, 2010, 1(1):45-54.
[12] Salas EAL, Boykin KG, Valdez R. Multispectral and texture feature application in image-object analysis of summer vegetation in Eastern Tajikistan Pamirs[J]. Remote Sensing, 2016, 8(1):78.
[13] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[14] Joachims T. Text categorization with support vector machines:Learning with many relevant features[C]. Dortmund Germany:Springer, 1998:137-142.
[15] Vapnik V. The nature of statistical learning theory[M]. Springer Science & Business Media, 2013.
[16] Vapnik VN. An overview of statistical learning theory[J]. IEEE transactions on neural networks, 1999, 10(5):988-999.
[17] 卢伟, 文鸿雁, 李淑. 基于SVM的遥感影像空间特征提取和分类研究[J]. 山西建筑, 2009, 35(5):10-12.
[18] 张耀波, 张迁. 基于SVM的遥感影像的分类[J]. 地理空间信息, 2005, (4):24-26.
[19] Kohonen T. Adaptive, associative, and self-organizing functions in neural computing[J]. Applied optics, 1987, 26(23):4910-4918.
[20] Kanellopoulos I, Wilkinson GG. Strategies and best practice for neural network image classification[J]. International Journal of Remote Sensing, 1997, 18(4):711-725.
[21] 陈岩, 李洋洋, 余乐, 等. 基于卷积神经网络的手写体数字识别系统[J]. 微电子学与计算机, 2018, 35(2):71-74.
[22] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25:1097-1105.
[23] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[24] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. 2014, arXiv:14091556.
[25] Yang F, Jin L, Yang W, et al. Handwritten/printed receipt classification using attention-based convolutional neural network[C]. IEEE, 2016:384-389.
[26] 郑益勤, 杨晓峰, 李紫薇. 深度学习的静止卫星图像海上强对流云团识别[J]. 遥感学报, 2020, 24(1):97-106.
[27] Chen Y, Lin Z, Zhao X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected topics in applied earth observations and remote sensing, 2014, 7(6):2094-2107.
[28] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[29] LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series[J]. The Handbook of Brain Theory and Neural Networks, 1995, 3361(10):1995.
[30] Badrinarayanan V, Kendall A, Cipolla R. Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
[31] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]. 2015:3431-3440.
[32] Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]. Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, 2015:234-241.
[33] Lee C-Y, Gallagher P, Tu Z. Generalizing pooling functions in CNNs:Mixed, gated, and tree[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):863-875.
[34] Klambauer G, Unterthiner T, Mayr A, et al. Self-normalizing neural networks[C]. 31st Conference on Neural Information Processing Systems (NIPS 2017):Long Beach, CA, USA, 2017:972-981.
[35] 李金洪. 深度学习之TensorFlow:入门、原理与进阶实战[M]. 北京:机械工业出版社, 2018.
[36] 李爱勤, 王环东, 王静怡, 等. 高分辨率遥感影像中云和似云目标的自动区分[J]. 测绘通报, 2017, (6):31-35.
[37] Rossow WB, Garder LC. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP[J]. Journal of Climate, 1993, 6(12):2341-2369.
[38] Taylor VR, Stowe LL. Reflectance characteristics of uniform earth and cloud surfaces derived from NIMBUS 7 ERB[J]. Journal of Geophysical Research:Atmospheres, 1984, 89(D4):4987-4996.
[39] Di Vittorio A V, Emery W J. An automated, dynamic threshold cloud-masking algorithm for daytime AVHRR images over land[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1682-1694.
[40] 武艳, 银燕, 师春香, 等. 基于动态阈值法的NOAA系列卫星云检测结果检验[J]. 高原气象, 2012, 31(3):745-751.
[41] Dybbroe A, Karlsson K-G, Thoss A. NWCSAF AVHRR cloud detection and analysis using dynamic thresholds and radiative transfer modeling. part I:Algorithm description[J]. Journal of Applied Meteorology and Climatology, 2005, 44(1):39-54.
[42] Poli G, Adembri G, Gherardelli M, et al. Dynamic threshold cloud detection algorithm improvement for AVHRR and SEVIRI images[C]//2010 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA, IEEE, 2010:4146-4149.
[43] 刘健. 中国区域云特性分析及在FY-2云检测中的应用[J]. 应用气象学报, 2009, 20(6):673-681.
[44] 刘健. FY-2云检测中动态阈值提取技术改进方法研究[J]. 红外与毫米波学报, 2010, 29(4):288-292.
[45] 刘希, 许健民, 杜秉玉. 用双通道动态阈值对GMS-5图像进行自动云检测[J]. 应用气象学报, 2005, (4):434-444.
[46] 杨铁利, 何全军. MODIS数据的云检测处理[J]. 鞍山科技大学学报, 2006, (2):162-166.
[47] 李娅, 郭建侠, 曹云昌, 等. FY-2G云量产品与地面观测云量对比分析[J]. 高原气象, 2018, 37(2):514-523.
[48] 裔传祥, 辛晓洲, 胡继超, 等. 基于GF-4数据分析低分辨率卫星云检测尺度误差对下行辐射计算的影响[J]. 地球科学进展, 2018, 33(4):425-434.
[49] 刘炼烨, 兰明才, 朱歆炜, 等. FY-2G卫星两种云订正产品在湖南的对比分析[J]. 暴雨灾害, 2017, 36(2):164-170.
[50] 瞿建华, 鄢俊洁, 薛娟, 等. 基于深度学习的FY3D/MERSI和EOS/MODIS云检测模型研究[J]. 气象与环境学报, 2019, 35(3):87-93.
[51] 徐启恒, 黄滢冰, 陈洋. 结合超像素和卷积神经网络的国产高分辨率遥感影像云检测方法[J]. 测绘通报, 2019, (1):50-55.
[52] 陈洋, 范荣双, 王竞雪, 等. 基于深度学习的资源三号卫星遥感影像云检测方法[J]. 光学学报, 2018, 38(1):362-367.
[53] Burges C J. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
[54] 康晓光, 孙龙祥. 基于人工神经网络的云自动检测算法[J]. 解放军理工大学自然科学版, 2005, (5):102-106.
[55] Zhou Z, Siddiquee MMR, Tajbakhsh N, et al. Unet++:A nested u-net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Springer, 2018:3-11.