针对高盐、高浓度有机废水处理过程,通过多类技术比选,推荐金属萃取法作为实现金属的回收与资源化再利用的技术、树脂吸附法作为有机物回收与资源化再利用的技术、高级氧化法作为实现有机物降解的技术、机械蒸汽再压缩(MVR)作为盐分回收与分离的技术,进而集成一套以“金属萃取法-树脂吸附法-高级氧化法-机械蒸汽再压缩”为主体工艺的高盐、高浓度有机废水资源化处理集成技术。
In view of the treatment process of high salt and high concentration organic wastewater, through comparison and selection of various technologies, this article recommends the metal extraction method as the technology to realize metal recovery and resource reuse, the resin adsorption method as the technology to realize organic matter recovery and resource reuse, the advanced oxidation method as the technology to realize organic matter degradation, and the mechanical vapor recompression as the technology to realize salt recovery and separation. Furthermore, a set of technologies for resource treatment of high salt and high concentration organic wastewater is integrated, which takes "metal extraction resin adsorption advanced oxidation mechanical vapor recompression (MVR)" as the main process. This integrated technology is useful for fine chemical enterprises to realize cleaner production and bring considerable economic benefits; it is helpful to realize the high quality and high value recovery of organic matter and inorganic salt, and has very important social benefits; it may improve the wastewater treatment level and resource recycling efficiency of China's fine chemical industry, and produce significant environmental benefits. It can provide important technical guidance for the recycling technology and industrialization of high salt and high concentration organic wastewater in the production process of typical inorganic fine chemicals, and help the green and sustainable development of fine chemical industry.
[1] 樊锐, 刘玉坤. 工业废盐资源化处置现状及分析[J]. 环境与发展, 2020, 32(8):52-53.
[2] 王昱, 王浩, 周海云. 化工废盐处理处置技术与政策的发展研究[J]. 污染防治技术, 2017, 30(4):11-15.
[3] 周海云, 鲍业闯, 包健, 等. 工业废盐处理处置现状研究进展[J]. 环境科技, 2020, 33(2):70-75.
[4] 李小燕. 全国危险废物填埋污染控制标准与废盐杂盐处理处置技术研讨共识无害化管理资源化利用[J]. 城乡建设, 2018(22):44-45.
[5] 李强, 戴世金, 郑怡琳, 等. 工业废盐中有机物脱除和资源化技术进展[J]. 环境工程, 2019, 37(12):200-206.
[6] 毛彦霞. 机械蒸汽再压缩技术处理含盐废水试验研究[D]. 重庆:重庆交通大学, 2014.
[7] 陈浩, 张枫, 王中正, 等. 高盐废水处理技术研究进展[J]. 广州化工, 2017, 45(22):17-18, 31.
[8] 韩雪冬, 吴艳军, 周然, 等. 浓盐水资源化利用装置运行问题与对策[J]. 煤炭科学技术, 2018, 46(增刊2):232-234.
[9] 陈浩, 张枫, 王中正, 等. 高盐废水处理技术研究进展[J]. 广州化工, 2017, 45(22):17-18, 31.
[10] 贾西部. 高盐废水调质后在余热烟气中的蒸发应用[J]. 环境工程, 2018, 36(5):49-53.
[11] 崔凤霞, 李荣, 陈玮娜. 高含盐废水零排放蒸发结晶技术进展[J]. 广州化学, 2017, 45(1):21-23.
[12] 徐腾, 张有贤, 施仲扬. pH对蒸发技术处理高盐高氨氮废水的影响[J]. 福建师范大学学报, 2016, 32(6):83-88.
[13] 冯嵩. 微电解-Fenton氧化联用去除高盐废水COD研究[J]. 环境科学与管理, 2016, 41(10):103-106.
[14] Yi X, Wang Y. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse[J]. Applied Water Science, 2017, 7(3):1231-1237.
[15] 卢峰. 纳滤膜对脱硫废水零排放系统浓盐水的分盐性能研究[J]. 广州化工, 2018, 46(13):38-40.
[16] Shijie S. Research on the salt separation performance of nano-filtration membrane in high salinity wastewater zero discharge field[J]. Industrial Water Treatment, 2017, 37(9):75-78.
[17] 于鹏飞, 耿佳鑫, 高子平, 等. 高盐废水生化处理技术[J]. 广州化工, 2015, 43(7):25-26, 83.