针对无机精细化工行业的高盐、高浓有机废水成分复杂、难降解等污染特征,利用无机精细化工高盐有机废水有价组分回收与水资源回用集成技术在镍钴电池材料生产过程进行了探索与实践。结果表明:废水中油类去除率达到99%,资源化回收得到的无水硫酸钠达到GB/T 6009—2014的III类标准(Na2SO4含量>92%),处理后废水总有机碳(TOC)含量≤0.05%,水回用率达到85%以上,蒸发残液与粉煤灰等辅料混合后高温焙烧可制得陶粒,将全部实现资源化。全流程吨水处理成本由220元降到180元以下,具有显著的经济效益和环境效益。
Aimed at the pollution characteristics of high salinity and high concentration organic wastewater in inorganic fine chemical industry such as complex composition and difficult degradation this study explorates and practises valuable components recovery and water resource reuse technology in the production process of nickel cobalt battery materials in inorganic fine chemical industry. The results show the followings:the oil removal rate from the wastewater can reach 99%; the anhydrous sodium sulfate obtained from resource recovery can meet the class III standard of GB/T 6009-2014 (Na2SO4 content >92%); the TOC content of wastewater after treatment is ≤ 0.05%, and the water reuse rate is more than 85%. When the evaporation residue is mixed with fly ash and other auxiliary materials, ceramsite can be prepared. So all of them can be recycled. The treatment cost per ton of water in the whole process is reduced from 220 yuan to less than 180 yuan, which has significant economic and environmental benefits.
[1] 李栗莹. 精细化工废水处理技术及控制对策研究[J]. 环境与发展, 2020, 32(11):63-64.
[2] 吴青谚, 林晓, 刘晨明, 等. 镍钴湿法冶金污染源解析及防治建议[J]. 世界有色金属, 2019(6):4-8.
[3] 周彤, 马健伟, 张赛男. 化工废水的处理及研究进展[J]. 化学工程师, 2020, 34(7):65-68.
[4] 赵倩. 特异性流化生物膜(SMBBR)处理发酵类制药废水中试研究[D]. 包头:内蒙古科技大学, 2015.
[5] 刘胜尧, 黄三勇, 郑宝生, 等. 含镍钴废水处理工艺的选择[J]. 有色冶金节能, 2020, 36(5):28-32.
[6] 刘凤梅, 李志强. 从工业钴萃余液、反萃取液中吸附除油试验研究[J]. 湿法冶金, 2018, 37(3):237-241.
[7] 易嘉, 邓飞跃, 曾浩. 电池正极材料厂高盐废水中镍的测定[J]. 资源信息与工程, 2019, 34(5):56-58.
[8] 樊锐, 刘玉坤. 工业废盐资源化处置现状及分析[J]. 环境与发展, 2020, 32(8):52-53.
[9] 王雪廷, 陈川, 徐熙俊, 等. 不同曝气位点对微氧强化硫酸盐还原-反硝化脱硫效果及群落结构的影响[J]. 环境科学学报, 2019, 39(10):3302-3309.