海洋微型污损生物膜会影响金属腐蚀过程和防污涂料性能,是污损生物群落的初级食物链,一直是国内外的研究焦点。研究了冬季青岛中港海水中暴露100余天的碳钢表面形成的腐蚀产物膜,以及载玻片、HT防腐涂层和NFGP600防污涂层表面形成的生物膜,采用电化学技术研究材料表面生物膜特征,运用SEM、EDS、XRD表征生物膜形态和物质组成,分析生物膜细菌、硅藻和原生动物的种类及形貌。研究表明,生物膜由细菌、硅藻、原生动物和海水中无机、有机颗粒组成;钢/海水界面同时发生钢的腐蚀和微型生物附着过程,两个过程互相作用使碳钢表面形成不定型、松软、不连续的腐蚀产物膜;防腐涂层表面生物膜由于原生动物对菌藻的蚕食和碳酸盐的存在,形成了较为疏松的生物膜,而防污涂层表面没有原生动物的影响,形成了致密的生物膜,在一定程度上能够隔绝海水环境。
The marine micro fouling biofilm would affect the metal corrosion process and the antifouling coating performance, as the primary food chain of the fouling biome, and it is a research focus at home and abroad. This paper studies the corrosion product film formed on the surface of the carbon steel exposed for more than 100 days in the sea water of Qingdao Zhonggang Habour in winter, and the biofilm formed on the surface of the slide, HT anticorrosive coating and the NFGP600 antifouling coating, by means of the electrochemical technique, with the microbial membrane characterized by SEM, EDS, and XRD. The types and the morphology of bacteria, diatoms and protozoa in the biofilm are analyzed. It is shown that the biofilms are composed of bacteria, diatoms, protozoa, inorganic and organic particles in the seawater. At the steel/seawater interface, the steel corrosion and microbiological adhesion processes occur simultaneously. These two processes are interacted to form an unshaped, soft and discontinuous biofilm on the surface of the carbon steel. The biofilm on the surface of the anticorrosive coating is relatively not very compact due to the protozoa's encroachment on the fungal algae and the formation of the carbonate in the film. The biofilm formed on the surface of the antifouling coating is relatively compact.
[1] Ma Y, Zhang Y M, Zhang R Y, et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms:A brief view[J]. Applied Microbiology and Biotechnology, 2020, 104(2):515-525.
[2] Li Y C, Xu D, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J]. Journal of Materials Science & Technology, 2018, 34(10):1713-1718.
[3] Li Y F, Ning C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling[J]. Bioactive Materials, 2019, 4:189-195.
[4] Hou B R, Li X G, Ma X M, et al. The cost of corrosion in China[J]. Npj Materials Degradation, 2017, 1(1):1-10.
[5] Dall'Agnol L T, Moura J J. Sulphate-reducing bacteria (SRB) and biocorrosion[M]. Oxford:Woodhead Publishing, 2014.
[6] Dall'Agnol L T, Cordas C M, Moura J J G. Influence of respiratory substrate in carbon steel corrosion by a sulphate reducing prokaryote model organism[J]. Bioelectrochemistry, 2014, 97:43-51.
[7] Padmavathi A R, Periyasamy M, Pandian S K. Assessment of 2,4-di-tert-butylphenol induced modifications in extracellular polymeric substances of Serratia marcescens[J]. Bioresource Technology, 2015, 188:185-189.
[8] Flemming H C. Biofouling and me:My Stockholm syndrome with biofilms[J]. Water Research, 2020, 173(5):115576.
[9] 马士德. 海洋腐蚀与防护[J]. 海洋科学, 1978(2):53-56.
[10] 马士德, 张林林, 修鹏远, 等. 青岛港湾防污涂料/海水界面细菌污损群落变化初探[J]. 中国涂料, 2019, 34(1):52-57.
[11] 马士德. 青岛港湾镜检中的污损生物群落变化及主要物种的初步研究[C]//中国海洋湖沼学会第十次会员代表大会2012海洋腐蚀与生物污损学术研讨会摘要集. 青岛:中国海洋湖沼学会、中国海洋湖沼学会腐蚀与污损专业委员会, 2012:60-63.
[12] 尹衍升, 董丽华, 刘涛, 等. 海洋材料的微生物附着腐蚀[M]. 北京:科学出版社, 2012:57-61.
[13] Osiro D, Colnago L A, Otoboni A M M B, et al. A kinetic model for Xylella fastidiosa adhesion, biofilm formation, and virulence[J]. FEMS Microbiology Letters, 2004, 236(2):313-318.
[14] Dang H, Lovell C R. Microbial surface colonization and biofilm development in marine environments[J]. Microbiology & Molecular Biology Reviews, 2016, 80(1):91-138.
[15] Zhang Y M, Ma Y, Duan J Z, et al. Analysis of marine microbial communities colonizing various metallic materials and rust layers[J]. Biofouling, 2019, 35(4):429.
[16] Zhang Y M, Ma Y, Zhang R Y, et al. Metagenomic resolution of functional diversity in copper surface-associated marine biofilms[J]. Frontiers in Microbiology, 2019, 10:2863.
[17] Katharios-Lanwermeyer S, Xi C W, Jakubovics N S, et al. Mini-review:Microbial coaggregation:ubiquity and implications for biofilm development[J]. Biofouling, 2014, 30(10):1235-1251.
[18] 余秀明. 低合金高强度钢浪花飞溅区点蚀行为及机理研究[D]. 青岛:中国科学院研究生院, 2016.
[19] 马士德, 徐利婷, 刘会莲, 等. 青岛港湾污损生物及其量化初探[J]. 中国涂料, 2019(22):60-65.
[20] 范春华, 李国祥, 刘伯洋, 等. 船用钢需钠弧菌附着腐蚀电化学噪声特征分析[J]. 南京航空航天大学学报, 2016, 48(1):81-86.
[21] Sahana T G, Rekha P D. A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro[J]. International Journal of Biological Macromolecules, 2019, 131:10-18.
[22] Jeon M S, Oh J J, Kim J Y, et al. Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485[J]. Bioresource Technology, 2019, 288:121513.
[23] Marshall K, Joint I, Callow M E, et al. Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza[J]. Microbial ecology, 2006, 52(2):302-310.
[24] Manjumol C C, Libini C L, Kripa V, et al. New record of marine tube dwelling diatoms Navicula mollis and Navicula rusticensis from South Andaman, India[J]. Indian Journal of Geo-Marine Sciences, 2019, 48(3):294-296.
[25] Liu W W, Jiang J M, Xu Y, et al. Diversity of free-living marine ciliates (Alveolata, Ciliophora):Faunal studies in coastal waters of China during the years 2011-2016[J]. European Journal of Protistology, 2017, 61:424-438.
[26] Mansoori H, Young D, Brown B, et al. Effect of CaCO3-saturated solution on CO2 corrosion of mild steel explored in a system with controlled water chemistry and well-defined mass transfer conditions[J]. Corrosion Science, 2019, 158:108078.