随着机器学习领域研究的持续发展,特别是深度学习方面的进步及图像处理器(GPU)等算力的持续提高,利用生物特征大数据的识别技术获得广泛关注,并在人证比对、智能监控以及疫情防控等多个领域取得了很好的应用。分析了大数据生物特征识别技术的发展态势,总结了生物特征类型以及大数据驱动的生物特征识别技术发展与应用,探讨了大数据生物特征识别技术的未来发展趋势。
Biometric recognition refers to the use of inherent physiological or behavioral characteristics of human body for personal identification, such as face recognition, fingerprint recognition, and iris recognition. Early technologies are usually based on handcrafted features and traditional machine learning methods, and constrained by data and computing power acquisition ability. Thus, they are generally limited to controlled environment and difficult to build powerful biometric recognition models by making use of large-scale biometric data effectively. In recent years, with the advancement of machine learning, especially deep learning and increasing computing power of GPU, big data based biometric recognition technologies have received widespread attention and have been widely used in the areas such as personal authentication, intelligent video surveillance, and prevention and control of epidemic. This paper summarizes the development of big-data based biometrics technologies, covering different types of biometrics and their applications, and then discusses the trend of big-data based biometrics technologies in the future.
[1] Jain A K, Flynn P, Ross A A. Handbook of biometrics[M]. Boston:Springer, 2008.
[2] Huang G B, Ramesh M, Berg T, et al. Labeled faces in the wild:A database for studying face recognition in unconstrained environments[R]. Amherst:University of Massachusetts, Amherst, 2007.
[3] Sun Y, Chen Y H, Wang X G, et al. Deep learning face representation by joint identification-verification[C]//Proceedings of the 21th International Conference on Neural Information Processing Systems. Heidelberg:Springer, 2014:1988-1996.
[4] Zhang Z Y, Tran L, Liu F, et al. On learning disentangled representations for gait recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, doi:10.1109/TPAMI.2020.2998790.
[5] 国务院关于印发新一代人工智能发展规划的通知[A/OL]. (2017-07-08)[2018-06-30]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[6] Maltoni D, Maio D, Jain A K, et al. Handbook of fingerprint recognition[M]. London:Springer London, 2009.
[7] Feng J J, Zhou J, Jain A K. Orientation field estimation for latent fingerprint enhancement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4):925-940.
[8] Sun Z N, Tan T N. Ordinal measures for iris recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2211-2226.
[9] Wang L, Tan T N, Ning H Z, et al. Silhouette analysisbased gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12):1505-1518.
[10] 刘成林, 刘迎建, 戴汝为. 基于多通道分解与匹配的笔迹鉴别研究[J]. 自动化学报, 1997, 23(1):56-63.
[11] Atal B S. Automatic recognition of speakers from their voices[J]. Proceedings of the IEEE, 1976, 64(4):460-475.
[12] Zhang H, Han H, Cui J Y, et al. RGB-D face recognition via deep complementary and common feature learning[C]//201813th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). Piscataway:IEEE, 2018:8-15.
[13] Cai J C, Han H, Shan S G, et al. FCSR-GAN:Joint face completion and super-resolution via multi-task learning[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2019, 2(2):109-121.
[14] Han H, Jain A K, Wang F, et al. Heterogeneous face attribute estimation:A deep multi-task learning approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(11):2597-2609.
[15] Han H, Li J, Jain A K, et al. Tattoo image search at scale:Joint detection and compact representation learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(10):2333-2348.
[16] Tan T N. Recent advances and future directions of biometric recognition[R]. Beijing:CAAI, 2019.
[17] Nixon M. A future of biometrics[R]. Beijing:CAAI, 2019.
[18] 于汉超, 汪峰, 蒋树强. 中国人工智能发展的若干紧要问题[J]. 科技导报, 2018, 36(17):40-44.
[19] Güera D, Delp E J. Deepfake video detection using recurrent neural networks[C]//201815th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway:IEEE, 2018:1-6.
[20] Kuo J C C. Towards effective and explainable biometrics[R]. Beijing:CAAI, 2019.