专题:阿尔茨海默病

神经炎症与神经退行性疾病

  • 黄宗晖 ,
  • 周荣斌
展开
  • 中国科学技术大学, 合肥微尺度物质科学国家研究中心, 合肥 230027
黄宗晖,博士研究生,研究方向为固有免疫中的神经免疫调控机制,电子信箱:hzhui98@mail.ustc.edu.cn

收稿日期: 2021-04-22

  修回日期: 2021-05-27

  网络出版日期: 2021-11-08

基金资助

国家重点研发计划项目(2019YFA0508503)

Neuroinflammation & neurodegenerative diseases

  • HUANG Zonghui ,
  • ZHOU Rongbin
Expand
  • Hefei National Laboratory for Physical Science at the Microscale, University of Science & Technology of China, Hefei 230027, China

Received date: 2021-04-22

  Revised date: 2021-05-27

  Online published: 2021-11-08

摘要

在脑损伤、感染等应激条件的诱导下,中枢神经系统中的小胶质细胞会迅速活化并促进神经炎症的发生。神经退行性疾病中同样存在广泛的慢性神经炎症,神经炎症还可能直接参与诱导了疾病的发生。对阿尔茨海默病等多种神经退行性疾病中炎症的活化机制,以及炎症如何诱导疾病发生和加重疾病进程的前沿研究进展进行了综述。提出找到那些靶向小胶质细胞活化关键位点,并具有良好血脑屏障通透性的药物是下一步的重点研究目标。

本文引用格式

黄宗晖 , 周荣斌 . 神经炎症与神经退行性疾病[J]. 科技导报, 2021 , 39(20) : 45 -55 . DOI: 10.3981/j.issn.1000-7857.2021.20.004

Abstract

With the induction under the stress conditions such as the brain injury and the infection, the microglia in the central nervous system will rapidly be activated to promote the neuroinflammation. Extensive chronic neuroinflammation can be found in neurodegenerative diseases, and the abnormal folding protein deposited in the brain of patients is usually the key cause of inflammation. In addition, the neuroinflammation may also directly participate in the induction of the disease. This paper reviews the mechanisms underlying the activation of inflammation in multiple neurodegenerative diseases, as well as cutting-edge studies of how the inflammation induces the disease initiation and aggravates the disease process. It is suggested that the next key research goal is to find the drugs that target the key sites of the microglia activation with a good blood-brain barrier permeability.

参考文献

[1] Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages[J]. Science, 2010, 330(6005):841-845.
[2] Ajami B, Bennett J L, Krieger C, et al. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life[J]. Nature Neuroscience, 2007, 10(12):1538-1543.
[3] Hammond T R, Robinton D, Stevens B. Microglia and the Brain:Complementary partners in development and disease[J]. Annual Review of Cell Development Biology, 2018, 34:523-44.
[4] Fourgeaud L, Través P G, Tufail Y, et al. TAM receptors regulate multiple features of microglial physiology[J]. Nature, 2016, 532(7598):240-244.
[5] Parkhurst C N, Yang G, Ninan I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor[J]. Cell, 2013, 155(7):1596-1609.
[6] Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease:Where do we go from here[J]. Nature Reviews:Neurology, 2021, 17:157-172.
[7] Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annual Review of Immunology, 2017, 35:441-468.
[8] Villa A, Vegeto E, Poletti A, et al. Estrogens, Neuroinflammation, and Neurodegeneration[J]. Endocrine Reviews, 2016, 37(4):372-402.
[9] Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308(5726):1314-1318.
[10] Heneka M T, Carson M J, El Khoury J, et al. Neuroinflammation in Alzheimer's disease[J]. Lancet Neurology, 2015, 14(4):388-405.
[11] Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo[J]. Nature Neuroscience, 2005, 8(6):752-758.
[12] Freeman L, Guo H, David C N, et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes[J]. Journal of Experimental Medicine, 2017, 214(5):1351-1370.
[13] Labzin L I, Heneka M T, Latz E. Innate Immunity and Neurodegeneration[J]. Annual Review of Medicine, 2018, 69:437-49.
[14] Sweeney M D, Sagare A P, Zlokovic B V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders[J]. Nature Reviews:Neurology, 2018, 14(3):133-50.
[15] Cheng Y, Wang Y J. Meningeal lymphatic vessels:A drain of the brain involved in neurodegeneration[J]. Neuroscience Bulletin, 2020, 36(5):557-560.
[16] Schain M, Kreisl W C. Neuroinflammation in neurodegenerative disorders:A review[J]. Current Neurology and Neuroscience Reports, 2017, 17(3):25.
[17] Fiebich B L, Batista C R A, Saliba S W, et al. Role of microglia TLRs in neurodegeneration[J]. Frontiers in Cellular Neuroscience, 2018, 12:329.
[18] De Nardo D. Toll-like receptors:Activation, signalling and transcriptional modulation[J]. Cytokine, 2015, 74(2):181-189.
[19] Broz P, Dixit V M. Inflammasomes:Mechanism of assembly, regulation and signalling[J]. Nature Reviews:Immunology, 2016, 16(7):407-420.
[20] Voet S, Srinivasan S, Lamkanfi M, et al. Inflammasomes in neuroinflammatory and neurodegenerative diseases[J]. EMBO Molecular Medicine, 2019, 11(6):e10248.
[21] Tohidpour A, Morgun A V, Boitsova E B, et al. Neuroinflammation and infection:Molecular mechanisms associated with dysfunction of neurovascular unit[J]. Frontiers in cellular and infection microbiology, 2017, 7:276.
[22] Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease:Current evidence and future directions[J]. Alzheimers Dement, 2016, 12(6):719-732.
[23] Hussain R, Zubair H, Pursell S, et al. Neurodegenerative diseases:Regenerative mechanisms and novel therapeutic approaches[J]. Brain Sciences, 2018, 8(9):177.
[24] Colpo G D, Ribeiro F M, Rocha N P, et al. Animal models for the study of human neurodegenerative diseases[M]//Conn P M. Animal Models for the Study of Human Disease. 2nd ed. London:Academic Press, 2017:1109-1129.
[25] Hammond T R, Marsh S E, Stevens B. Immune signaling in neurodegeneration[J]. Immunity, 2019, 50(4):955-974.
[26] Alzheimer A. Uber eine eigenartige Erkrankung der Hirnrinde[J]. Zentralbl Nervenh Psych, 1907, 18:177-179.
[27] Alzheimer A. Über eigenartige Krankheitsfälle des späteren Alters[J]. Zeitschrift für die gesamte Neurologie und Psychiatrie, 1911, 4(1):356.
[28] Prince M J. World Alzheimer report 2015:The global impact of dementia[M]. Alzheimer's Disease International, 2015.
[29] Selkoe D J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior[J]. Behavioural Brain Research, 2008, 192(1):106-113.
[30] Wang Y, Mandelkow E. Tau in physiology and pathology[J]. Nature Reviews:Neuroscience, 2016, 17(1):5-21.
[31] Iqbal K, Liu F, Gong C X. Tau and neurodegenerative disease:The story so far[J]. Nature Reviews:Neurology, 2016, 12(1):15-27.
[32] McGeer P L, Itagaki S, Tago H, et al. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLADR[J]. Neuroscience Letters, 1987, 79(1/2):195-200.
[33] Sarlus H, Heneka M T. Microglia in Alzheimer's disease[J]. Journal of Clinical Investigation, 2017, 127(9):3240-3249.
[34] Sheedy F J, Grebe A, Rayner K J, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation[J]. Nature Immunology, 2013, 14(8):812-820.
[35] Halle A, Hornung V, Petzold G C, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-β[J]. Nature Immunology, 2008, 9(8):857-865.
[36] Heneka M T, Kummer M P, Stutz A, et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice[J]. Nature, 2013, 493(7434):674-678.
[37] Dunn N, Mullee M, Perry V H, et al. Association between dementia and infectious disease:Evidence from a case-control study[J]. Alzheimer Disease and Associated Disorders, 2005, 19(2):91-94.
[38] Tischer J, Krueger M, Mueller W, et al. Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer's disease[J]. Glia, 2016, 64(9):1562-1572.
[39] Swardfager W, Lanctôt K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer's disease[J]. Biological Psychiatry, 2010, 68(10):930-941.
[40] Misra A, Chakrabarti S S, Gambhir I S. New genetic players in late-onset Alzheimer's disease:Findings of genome-wide association studies[J]. Indian Journal of Medical Research, 2018, 148(2):135-144.
[41] Philippens I H, Ormel P R, Baarends G, et al. Acceleration of amyloidosis by inflammation in the amyloid-beta marmoset monkey model of Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2017, 55(1):101-113.
[42] Hur J Y, Frost G R, Wu X, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease[J]. Nature, 2020, 586(7831):735-740.
[43] Soscia S J, Kirby J E, Washicosky K J, et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide[J]. PloS One, 2010, 5(3):e9505.
[44] Dempsey C, Rubio Araiz A, Bryson K J, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes nonphlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice[J]. Brain, Behavior, and Immunity, 2017, 61:306-316.
[45] Yin J, Zhao F, Chojnacki J E, et al. NLRP3 inflammasome inhibitor ameliorates amyloid pathology in a mouse model of Alzheimer's disease[J]. Molecular Neurobiology, 2018, 55(3):1977-1987.
[46] Daniels M J, Rivers-Auty J, Schilling T, et al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer's disease in rodent models[J]. Nature Communications, 2016, 7:12504.
[47] Flores J, Noël A, Foveau B, et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer's disease mouse model[J]. Nature Communications, 2018, 9(1):3916.
[48] Poewe W. Non-motor symptoms in Parkinson's disease[J]. European Journal of Neurology, 2008, 15(Suppl 1):14-20.
[49] Spillantini M G, Crowther R A, Jakes R, et al. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies[J]. PNAS, 1998, 95(11):6469-6473.
[50] Elbaz A, Carcaillon L, Kab S, et al. Epidemiology of Parkinson's disease[J]. Revue Neurologique, 2016, 172(1):14-26.
[51] GBD 2016 Parkinson's disease collaborators global, regional, and national burden of Parkinson's disease, 1990-2016:A systematic analysis for the global burden of disease study 2016[J]. Lancet Neurology, 2018, 17(11):939-953.
[52] Dorsey E R, Bloem B R. The Parkinson pandemic-A call to action[J]. JAMA Neurol, 2018, 75(1):9-10.
[53] Codolo G, Plotegher N, Pozzobon T, et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies[J]. PloS One, 2013, 8(1):e55375.
[54] Daniele S G, Béraud D, Davenport C, et al. Activation of MyD88-dependent TLR1/2 signaling by misfolded α-synuclein, a protein linked to neurodegenerative disorders[J]. Science Signal, 2015, 8(376):ra45.
[55] Fellner L, Irschick R, Schanda K, et al. Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia[J]. Glia, 2013, 61(3):349-360.
[56] Wang W, Nguyen L T, Burlak C, et al. Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein[J]. PNAS, 2016, 113(34):9587-9592.
[57] Yan Y, Jiang W, Liu L, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome[J]. Cell, 2015, 160(1/2):62-73.
[58] Deora V, Albornoz E A, Zhu K, et al. The ketone body β-hydroxybutyrate does not inhibit synuclein mediated inflammasome activation in microglia[J]. Journal of Neuroimmune Pharmacology, 2017, 12(4):568-574.
[59] Terada T, Yokokura M, Yoshikawa E, et al. Extrastriatal spreading of microglial activation in Parkinson's disease:A positron emission tomography study[J]. Annals of Nuclear Medicine, 2016, 30(8):579-587.
[60] Duffy M F, Collier T J, Patterson J R, et al. Lewy bodylike alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration[J]. Journal of Neuroinflammation, 2018, 15(1):129.
[61] Harms A S, Delic V, Thome A D, et al. α-Synuclein fibrils recruit peripheral immune cells in the rat brain prior to neurodegeneration[J]. Acta Neuropathol Communications, 2017, 5(1):85.
[62] Gao H M, Kotzbauer P T, Uryu K, et al. Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration[J]. Journal of Neuroscience, 2008, 28(30):7687-7698.
[63] Challis C, Hori A, Sampson T R, et al. Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice[J]. Nature Neuroscience, 2020, 23(3):327-336.
[64] Williams-Gray C H, Wijeyekoon R, Yarnall A J, et al. Serum immune markers and disease progression in an incident Parkinson's disease cohort (ICICLE-PD)[J]. Movement Disorders, 2016, 31(7):995-1003.
[65] de Pablo-Fernandez E, Goldacre R, Pakpoor J, et al. Association between diabetes and subsequent Parkinson disease:A record-linkage cohort study[J]. Neurology, 2018, 91(2):e139-e142.
[66] Gordon R, Albornoz E A, Christie D C, et al. Inflammasome inhibition prevents α-synuclein pathology and dopaminergic neurodegeneration in mice[J]. Science Translational Medicine, 2018, 10(465):eaah4066.
[67] Zhou Y, Lu M, Du R H, et al. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease[J]. Molecular Neurodegeneration, 2016, 11:28.
[68] Li D S, Yang H Q, Ma J J, et al. MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson's disease by targeting Nlrp3[J]. Human Cell, 2018, 31(2):106-115.
[69] Zeng R, Luo D X, Li H P, et al. MicroRNA-135b alleviates MPP(+)-mediated Parkinson's disease in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis[J]. Journal of Clinical Neuroscience, 2019, 65:125-133.
[70] Rothstein J D. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis[J]. Annals of Neurology, 2009, 65(Suppl 1):S3-S9.
[71] Gurney M E, Pu H, Chiu A Y, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation[J]. Science, 1994, 264(5166):1772-1775.
[72] Dugger B N, Dickson D W. Pathology of neurodegenerative diseases[J]. Cold Spring Harbor Perspectives in Biology, 2017, 9(7):a028035.
[73] Zhao W, Beers D R, Bell S, et al. TDP-43 activates microglia through NF-κB and NLRP3 inflammasome[J]. Experimental Neurology, 2015, 273:24-35.
[74] Meissner F, Molawi K, Zychlinsky A. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis[J]. PNAS, 2010, 107(29):13046-13050.
[75] Zhao W, Beers D R, Henkel J S, et al. Extracellular mutant SOD1 induces microglial-mediated motoneuron injury[J]. Glia, 2010, 58(2):231-243.
[76] Sargsyan S A, Blackburn D J, Barber S C, et al. Acomparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function[J]. BMC Neuroscience, 2011, 12:91.
[77] Nguyen M D, D'Aigle T, Gowing G, et al. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis[J]. Journal of Neuroscience, 2004, 24(6):1340-1349.
[78] Schütz B, Reimann J, Dumitrescu-Ozimek L, et al. The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice[J]. Journal of Neuroscience, 2005, 25(34):7805-7812.
[79] Maier A, Deigendesch N, Müller K, et al. Interleukin-1 antagonist anakinra in amyotrophic lateral sclerosis——A pilot study[J]. PloS One, 2015, 10(10):e0139684.
[80] Caron N S, Dorsey E R, Hayden M R. Therapeutic approaches to Huntington disease:From the bench to the clinic[J]. Nature Reviews:Drug Discovery, 2018, 17(10):729-750.
[81] Walker F O. Huntington's disease[J]. Lancet, 2007, 369(9557):218-228.
[82] Bates G P, Dorsey R, Gusella J F, et al. Huntington disease[J]. Nature Reviews:Disease Primers, 2015, 1(1):1-21.
[83] Heneka M T, Kummer M P, Latz E. Innate immune activation in neurodegenerative disease[J]. Nature Reviews:Immunology, 2014, 14(7):463-477.
[84] Björkqvist M, Wild E J, Thiele J, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease[J]. Journal of Experimental Medicine, 2008, 205(8):1869-1877.
[85] Crotti A, Benner C, Kerman B E, et al. Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors[J]. Nature Neuroscience, 2014, 17(4):513-521.
[86] Novellino F, Saccà V, Donato A, et al. Innateimmunity:Acommon denominator between neurodegenerative and neuropsychiatric diseases[J]. International Journal of Molecular Sciences, 2020, 21(3):1115.
[87] Ona V O, Li M, Vonsattel J P, et al. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease[J]. Nature, 1999, 399(6733):263-267.
[88] Chen M, Ona V O, Li M, et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease[J]. Nature Medicine, 2000, 6(7):797-801.
[89] Wan M, Ding L, Wang D, et al. Serotonin:A potent immune cell modulator in autoimmune diseases[J]. Front Immunol, 2020, 11:186.
[90] Brück W. Clinical implications of neuropathological findings in multiple sclerosis[J]. Journal of Neurology, 2005, 252(Suppl 3):iii10-iii4.
[91] Zhang J, Markovic-Plese S, Lacet B, et al. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis[J]. Journal of Experimental Medicine, 1994, 179(3):973-984.
[92] Bettelli E. Building different mouse models for human MS[J]. Annals of the New York Academy of Sciences, 2007, 1103:11-18.
[93] Inoue M, Shinohara M L. NLRP3 Inflammasome and MS/EAE[J]. Autoimmune Diseases, 2013, 2013:859145.
[94] Ciraci C, Janczy J R, Jain N, et al. Immunecomplexes indirectly suppress the generation of Th17 responses in vivo[J]. PloS One, 2016, 11(3):e0151252.
[95] Gris D, Ye Z, Iocca H A, et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses[J]. Journal of Immunology, 2010, 185(2):974-981.
[96] Jha S, Srivastava S Y, Brickey W J, et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18[J]. Journal of Neuroscience, 2010, 30(47):15811-15820.
[97] McKenzie B A, Mamik M K, Saito L B, et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis[J]. PNAS, 2018, 115(26):E6065-E6074.
[98] Coll R C, Robertson A A, Chae J J, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases[J]. Nature Medicine, 2015, 21(3):248-255.
[99] Sánchez-Fernández A, Skouras D B, Dinarello C A, et al. OLT1177(Dapansutrile), a selective NLRP3 inflammasome inhibitor, ameliorates experimental autoimmune encephalomyelitis pathogenesis[J]. Frontiers in Immunology, 2019, 10:2578.
[100] Gao Q, Zhang Y, Han C, et al. Blockade of CD47 ameliorates autoimmune inflammation in CNS by suppressing IL-1-triggered infiltration of pathogenic Th17 cells[J]. Journal of Autoimmunity, 2016, 69:74-85.
[101] Lammert C R, Frost E L, Bellinger C E, et al. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment[J]. Nature, 2020, 580(7805):647-652.
[102] Ambrosini Y M, Borcherding D, Kanthasamy A, et al. The gut-brain axis in neurodegenerative diseases and relevance of the canine model:A review[J]. Frontiers in Aging Neuroscience, 2019, 11:130.
文章导航

/