专题:阿尔茨海默病

阿尔茨海默病的基因组学与功能基因组学研究进展

  • 张登峰 ,
  • 徐敏 ,
  • 姚永刚
展开
  • 1. 中国科学院昆明动物研究所动物模型与人类疾病机理重点实验室, 昆明 650223;
    2. 中国科学院脑科学与智能卓越创新中心, 上海 200031
张登峰(通信作者),研究员,研究方向为医学遗传学,电子信箱:zhangdengfeng@mail.kiz.ac.cn;徐敏(共同第一作者),副研究员,研究方向为生物信息学,电子信箱:xumin@mail.kiz.ac.cn

收稿日期: 2021-04-08

  修回日期: 2021-06-13

  网络出版日期: 2021-11-08

基金资助

国家自然科学基金重点项目(31730037);国家自然科学基金优秀青年基金项目(82022017);国家自然科学基金面上项目(31970965);中国科学院特别研究助理项目(292021000016)

Genomics and functional genomics of Alzheimer's disease

  • ZHANG Dengfeng ,
  • XU Min ,
  • YAO Yonggang
Expand
  • 1. Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China;
    2. CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China

Received date: 2021-04-08

  Revised date: 2021-06-13

  Online published: 2021-11-08

摘要

阿尔茨海默病(AD)是最常见的神经退行性疾病与最主要的痴呆类型,其发病率随着年龄增加而呈指数式增长。随着人口老龄化,AD造成的社会经济负担愈趋严重。AD的遗传力接近80%,其人群易感程度、表型差异等性状特征受机体遗传变异的极大影响。总结了基于家系连锁分析、病例对照全基因组关联分析、全基因组测序等基因组学分析手段鉴定与AD发生发展相关的遗传变异与风险基因,梳理了基于各种组学数据的功能基因组学研究手段,解析遗传变异背后的调控元件、效应基因及其分子过程的研究进展。对风险基因及其转录与蛋白水平改变的揭示,可为AD的发病机制解析、药物开发、精准诊断与早期预测提供直接的靶点。

本文引用格式

张登峰 , 徐敏 , 姚永刚 . 阿尔茨海默病的基因组学与功能基因组学研究进展[J]. 科技导报, 2021 , 39(20) : 80 -91 . DOI: 10.3981/j.issn.1000-7857.2021.20.007

Abstract

The Alzheimer's disease (AD) is a major form of dementia and the most prevalent neurodegenerative disease in the elderly. In view of its high heritability, the genetic and genomic study plays essential roles in the basic researches and the clinical practice of the AD. This paper reviews the research advances regarding the genetic analyses of the AD, from the linkage analyses and the genome-wide association studies, to the next-generation sequencing studies, including also the functional variations, the causal genes, the multi-omic alterations, and the biological mechanisms underlying the AD genetics from the perspective of the functional genomics. It is expected that the genomic and functional genomic studies will contribute to the understanding and the management of the disease.

参考文献

[1] Gatz M, Pedersen N L, Berg S, et al. Heritability for Alzheimer's disease:The study of dementia in Swedish twins[J]. Journals of Gerontology Series A:Biological Sciences and Medical Sciences, 1997, 52(2):M117-125.
[2] Ridge P G, Mukherjee S, Crane P K, et al. Alzheimer's disease:Analyzing the missing heritability[J]. PloS One, 2013, 8(11):e79771.
[3] Gatz M, Reynolds C A, Fratiglioni L, et al. Role of genes and environments for explaining Alzheimer disease[J]. Archives of General Psychiatry, 2006, 63(2):168-174.
[4] Tenesa A, Haley C S. The heritability of human disease:Estimation, uses and abuses[J]. Nature Reviews:Genetics, 2013, 14(2):139-149.
[5] Schellenberg G D, Pericak-Vance M A, Wijsman E M, et al. Linkage analysis of familial Alzheimer disease, using chromosome 21 markers[J]. American Journal of Human Genetics, 1991, 48(3):563-583.
[6] Kamino K, Orr H T, Payami H, et al. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region[J]. American Journal of Human Genetics, 1992, 51(5):998-1014.
[7] St George-Hyslop P H, Tanzi R E, Polinsky R J, et al. The genetic defect causing familial Alzheimer's disease maps on chromosome 21[J]. Science, 1987, 235(4791):885-890.
[8] Schellenberg G D, Bird T D, Wijsman E M, et al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14[J]. Science, 1992, 258(5082):668-671.
[9] St George-Hyslop P, Haines J, Rogaev E, et al. Genetic evidence for a novel familial Alzheimer's disease locus on chromosome 14[J]. Nature Genetics, 1992, 2(4):330-334.
[10] van Broeckhoven C, Backhovens H, Cruts M, et al. Mapping of a gene predisposing to early-onset Alzheimer's disease to chromosome 14q24.3[J]. Nature Genetics, 1992, 2(4):335-339.
[11] Levy-Lahad E, Wijsman E M, Nemens E, et al. A familial Alzheimer's disease locus on chromosome 1[J]. Science, 1995, 269(5226):970-973.
[12] Rogaev E I, Sherrington R, Rogaeva E A, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene[J]. Nature, 1995, 376(6543):775-778.
[13] Guerreiro R, Bras J, Hardy J. SnapShot:Genetics of Alzheimer's disease[J]. Cell, 2013, 155(4):968-968.e1.
[14] Hardy J A, Higgins G A. Alzheimer's disease:The amyloid cascade hypothesis[J]. Science, 1992, 256(5054):184-185.
[15] Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer's disease:Progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580):353-356.
[16] Tanzi R E, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis:A genetic perspective[J]. Cell, 2005, 120(4):545-555.
[17] Tanzi R E. The genetics of Alzheimer disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(10):a006296.
[18] van Cauwenberghe C, van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease:Clinical implications and perspectives[J]. Genetics in Medicine, 2016, 18(5):421-430.
[19] Rademakers R, Cruts M, Sleegers K, et al. Linkage and association studies identify a novel locus for Alzheimer disease at 7q36 in a Dutch population-based sample[J]. American Journal of Human Genetics, 2005, 77(4):643-652.
[20] Wang G, Zhang D F, Jiang H Y, et al. Mutation and association analyses of dementia-causal genes in Han Chinese patients with early-onset and familial Alzheimer's disease[J]. Journal of Psychiatric Research, 2019, 113:141-147.
[21] Purcell S. Variancecomponents models for gene-environment interaction in twin analysis[J]. Twin Research, 2002, 5(6):554-571.
[22] Kaprio J. Twins and the mystery of missing heritability:The contribution of gene-environment interactions[J]. Journal of Internal Medicine, 2012, 272(5):440-448.
[23] Manuck S B, McCaffery J M. Gene-environment interaction[J]. Annual Review of Psychology, 2014, 65:41-70.
[24] Pulst S M. Genetic linkage analysis[J]. Archives of Neurology, 1999, 56(6):667-672.
[25] The 1000 Genomes Project Consortium. A global reference for human genetic variation[J]. Nature, 2015, 526(7571):68-74.
[26] Rodriguez-Murillo L, Greenberg D A. Genetic association analysis:A primer on how it works, its strengths and its weaknesses[J]. International Journal of Andrology, 2008, 31(6):546-556.
[27] Strittmatter W J, Saunders A M, Schmechel D, et al. Apolipoprotein E:High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease[J]. PNAS, 1993, 90(5):1977-1981.
[28] Saunders A M, Strittmatter W J, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease[J]. Neurology, 1993, 43(8):1467-1472.
[29] Lambert J C, Ibrahim-Verbaas C A, Harold D, et al. Meta-analysis of 74046 individuals identifies 11 new susceptibility loci for Alzheimer's disease[J]. Nature Genetics, 2013, 45(12):1452-1458.
[30] Zhang D F, Li J, Wu H, et al. CFH variants affect structural and functional brain changes and genetic risk of Alzheimer's disease[J]. Neuropsychopharmacology, 2016, 41(4):1034-1045.
[31] Bertram L, McQueen M B, Mullin K, et al. Systematic meta-analyses of Alzheimer disease genetic association studies:The AlzGene database[J]. Nature Genetics, 2007, 39(1):17-23.
[32] Tam V, Patel N, Turcotte M, et al. Benefits and limitations of genome-wide association studies[J]. Nature Reviews:Genetics, 2019, 20(8):467-484.
[33] Grupe A, Abraham R, Li Y, et al. Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants[J]. Human Molecular Genetics, 2007, 16(8):865-873.
[34] Reiman E M, Webster J A, Myers A J, et al. GAB2 alleles modify Alzheimer's risk in ApoE ε4 carriers[J]. Neuron, 2007, 54(5):713-720.
[35] Lambert J C, Heath S, Even G, et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease[J]. Nature Genetics, 2009, 41(10):1094-1099.
[36] Harold D, Abraham R, Hollingworth P, et al. Genomewide association study identifies variants at CLU and PICALM associated with Alzheimer's disease[J]. Nature Genetics, 2009, 41(10):1088-1093.
[37] Seshadri S, Fitzpatrick A L, Ikram M A, et al. Genomewide analysis of genetic loci associated with Alzheimer disease[J]. JAMA, 2010, 303(18):1832-1840.
[38] Hollingworth P, Harold D, Sims R, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease[J]. Nature Genetics, 2011, 43(5):429-435.
[39] Naj A C, Jun G, Beecham G W, et al. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease[J]. Nature Genetics, 2011, 43(5):436-441.
[40] Karch C M, Goate A M. Alzheimer's disease risk genes and mechanisms of disease pathogenesis[J]. Biological Psychiatry, 2015, 77(1):43-51.
[41] Wang H Z, Bi R, Hu Q X, et al. Validating GWAS-identified risk loci for Alzheimer's disease in Han Chinese populations[J]. Molecular Neurobiology, 2016, 53(1):379-390.
[42] Thomas R S, Henson A, Gerrish A, et al. Decreasing the expression of PICALM reduces endocytosis and the activity of beta-secretase:Implications for Alzheimer's disease[J]. BMC Neuroscience, 2016, 17(1):50.
[43] Sakae N, Liu C C, Shinohara M, et al. ABCA7 deficiency accelerates amyloid-beta Generation and Alzheimer's neuronal pathology[J]. Journal of Neuroscience, 2016, 36(13):3848-3859.
[44] Marioni R E, Harris S E, Zhang Q, et al. GWAS on family history of Alzheimer's disease[J]. Translational Psychiatry, 2018, 8(1):99.
[45] Jansen I E, Savage J E, Watanabe K, et al. Genomewide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk[J]. Nature Genetics, 2019, 51(3):404-413.
[46] Kunkle B W, Grenier-Boley B, Sims R, et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing[J]. Nature Genetics, 2019, 51(3):414-430.
[47] Wightman D P, Jansen I E, Savage J E, et al. Largest GWAS (N=1,126,563) of Alzheimer's disease implicates microglia and immune cells[J/OL]. medRxiv, 2020, https://doi.org/10.1101/2020.11.20.20235275.
[48] Bellenguez C, Küçükali F, Jansen I, et al. New insights on the genetic etiology of Alzheimer's and related dementia[J/OL]. medRxiv, 2020, https://doi.org/10.1101/2020.10.01.20200659.
[49] Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with the risk of Alzheimer's disease[J]. New England Journal of Medicine, 2013, 368(2):107-116.
[50] Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer's disease[J]. New England Journal of Medicine, 2013, 368(2):117-127.
[51] Cheng-Hathaway P J, Reed-Geaghan E G, Jay T R, et al. The Trem2 R47H variant confers loss-of-functionlike phenotypes in Alzheimer's disease[J]. Molecular Neurodegeneration, 2018, 13(1):29.
[52] Condello C, Yuan P, Grutzendler J. Microglia-mediated neuroprotection, TREM2, and Alzheimer's disease:Evidence from optical imaging[J]. Biological Psychiatry[J]. 2018, 83(4):377-387.
[53] Wetzel-Smith M K, Hunkapiller J, Bhangale T R, et al. A rare mutation in UNC5C predisposes to late-onset Alzheimer's disease and increases neuronal cell death[J]. Nature Medicine, 2014. 20(12):1452-1457.
[54] Steinberg S, Stefansson H, Jonsson T, et al. Loss-offunction variants in ABCA7 confer risk of Alzheimer's disease[J]. Nature Genetics, 2015, 47(5):445-447.
[55] Beecham G W, Vardarajan B, Blue E, et al. Rare genetic variation implicated in non-Hispanic white families with Alzheimer disease[J]. Neurology Genetics, 2018, 4(6):e286.
[56] Raghavan N S, Brickman A M, Andrews H, et al. Whole-exome sequencing in 20197 persons for rare variants in Alzheimer's disease[J]. Annals of Clinical and Translational Neurology, 2018, 5(7):832-842.
[57] Cruchaga C, Karch C M, Jin S C, et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease[J]. Nature, 2014, 505(7484):550-554.
[58] Sims R, van der Lee S J, Naj A C, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease[J]. Nature Genetics, 2017, 49(9):1373-1384.
[59] Logue M W, Schu M, Vardarajan B N, et al. Acomprehensive genetic association study of Alzheimer disease in African Americans[J]. Archives of Neurology, 2011, 68(12):1569-1579.
[60] Mez J, Chung J, Jun G, et al. Two novel loci, COBL and SLC10A2, for Alzheimer's disease in African Americans[J]. Alzheimers Dement, 2017, 13(2):119-129.
[61] Kunkle B W, Schmidt M, Klein H U, et al. Novel Alzheimer disease risk loci and pathways in African American individuals using the African genome resources panel:A meta-analysis[J]. JAMA Neurology, 2021, 78(1):102-113.
[62] Miyashita A, Koike A, Jun G, et al. SORL1 is genetically associated with late-onset Alzheimer's disease in Japanese, Koreans and Caucasians[J]. PloS One, 2013, 8(4):e58618.
[63] Hirano A, Ohara T, Takahashi A, et al. A genome-wide association study of late-onset Alzheimer's disease in a Japanese population[J]. Psychiatric Genetics, 2015, 25(4):139-146.
[64] Shigemizu D, Mitsumori R, Akiyama S, et al. Ethnic and trans-ethnic genome-wide association studies identify new loci influencing Japanese Alzheimer's disease risk[J]. Translational Psychiatry, 2021, 11(1):151.
[65] Kang S, Gim J, Gunasekaran T I, et al. APOE-stratified genome-wide association study suggests potential novel genes for late-onset Alzheimer's disease in East-Asian descent[J/OL]. medRxiv, 2021, https://doi.org/10.1101/2020.07.02.20145557.
[66] Zhou X, Chen Y, Mok K Y, et al. Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer's disease pathogenesis[J]. PNAS, 2018, 115(8):1697-1706.
[67] Zhang D F, Fan Y, Xu M, et al. Complement C7 is a novel risk gene for Alzheimer's disease in Han Chinese[J]. National Science Review, 2019, 6(2):257-274.
[68] Wang B B, Bao S Y, Zhang Z G, et al. A rare variant in MLKL confers susceptibility to ApoE ε4-negative Alzheimer's disease in Hong Kong Chinese population[J]. Neurobiol Aging, 2018, 68(160):160.e1-160.e7.
[69] Jia L F, Li F Y, Wei C B, et al. Prediction of Alzheimer's disease using multi-variants from a Chinese genome-wide association study[J]. Brain, 2020, 144(3):924-937..
[70] Andrews S J, Fulton-Howard B, Goate A. Interpretation of risk loci from genome-wide association studies of Alzheimer's disease[J]. Lancet Neurology, 2020, 19(4):326-335.
[71] Lunnon K, Smith R, Hannon E, et al. Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease[J]. Nature Neuroscience, 2014, 17(9):1164-1170.
[72] de Jager P L, Srivastava G, Lunnon K, et al. Alzheimer's disease:Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci[J]. Nature Neuroscience, 2014, 17(9):1156-1163.
[73] Nativio R, Donahue G, Berson A, et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease[J]. Nature Neuroscience, 2018, 21(4):497-505.
[74] Marzi S J, Leung S K, Ribarska T, et al. A histone acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac differences in the entorhinal cortex[J]. Nature Neuroscience, 2018. 21(11):1618-1627.
[75] Klein H U, McCabe C, Gjoneska E, et al. Epigenomewide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer's human brains[J]. Nature Neuroscience, 2019, 22(1):37-46.
[76] Kikuchi M, Hara N, Hasegawa M, et al. Enhancer variants associated with Alzheimer's disease affect gene expression via chromatin looping[J]. BMC Medical Genomics, 2019, 12(1):128.
[77] Chen Y, Zhu J, Lum P Y, et al. Variations in DNA elucidate molecular networks that cause disease[J]. Nature, 2008, 452(7186):429-435.
[78] Blalock E M, Geddes J W, Chen K C, et al. Incipient Alzheimer's disease:Microarray correlation analyses reveal major transcriptional and tumor suppressor responses[J]. PNAS, 2004, 101(7):2173-2178.
[79] Hokama M, Oka S, Leon J, et al. Altered expression of diabetes-related genes in Alzheimer's disease brains:The Hisayama study[J]. Cerebral Cortex, 2014, 24(9):2476-2488.
[80] Lai M K, Esiri M M, Tan M G. Genome-wide profiling of alternative splicing in Alzheimer's disease[J]. Genom Data, 2014, 2:290-292.
[81] Miller J A, Woltjer R L, Goodenbour J M, et al. Genes and pathways underlying regional and cell type changes in Alzheimer's disease[J]. Genome Medicine, 2013, 5(5):48.
[82] Blalock E M, Buechel H M, Popovic J, et al. Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer's disease[J]. Journal of Chemical Neuroanatomy, 2011, 42(2):118-126.
[83] Webster J A, Gibbs J R, Clarke J, et al. Genetic control of human brain transcript expression in Alzheimer disease[J]. American Journal of Human Genetics, 2009, 84(4):445-458.
[84] Xu M, Zhang D F, Luo R, et al. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimer's disease[J]. Alzheimers Dementia, 2018, 14(2):215-229.
[85] Mathys H, Davila-Velderrain J, Peng Z, et al. Singlecell transcriptomic analysis of Alzheimer's disease[J]. Nature, 2019, 570(7761):332-337.
[86] Grubman A, Chew G, Ouyang J F, et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation[J]. Nature Neuroscience, 2019, 22(12):2087-2097.
[87] Lau S F, Cao H, Fu A K Y, et al. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease[J]. PNAS, 2020, 117(41):25800-25809.
[88] Zhang B, Gaiteri C, Bodea L G, et al. Integrated systems approach identifies genetic nodes and networks in lateonset Alzheimer's disease[J]. Cell, 2013, 153(3):707-720.
[89] Andreev V P, Petyuk V A, Brewer H M, et al. Labelfree quantitative LC-MS proteomics of Alzheimer's disease and normally aged human brains[J]. Journal of Proteome Research, 2012, 11(6):3053-3067.
[90] Johnson E C B, Dammer E B, Duong D M, et al. Largescale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation[J]. Nature Medicine, 2020, 26(5):769-780.
[91] Wingo A P, Liu Y, Gerasimov E S, et al. Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer's disease pathogenesis[J]. Nature Genetics, 2021, 53(2):143-146.
[92] Toledo J B, Arnold M, Kastenmüller G, et al. Metabolic network failures in Alzheimer's disease:A biochemical road map[J]. Alzheimers Dementia, 2017, 13(9):965-984.
[93] Mapstone M, Cheema A K, Fiandaca M S, et al. Plasma phospholipids identify antecedent memory impairment in older adults[J]. Nature Medicine, 2014, 20(4):415-418.
[94] Xiong F, Ge W, Ma C. Quantitative proteomics reveals distinctcomposition of amyloid plaques in Alzheimer's disease[J]. Alzheimers Dementia, 2019, 15(3):429-440.
[95] Small K S, Hedman A K, Grundberg E, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes[J]. Nature Genetics, 2011, 43(6):561-564.
[96] Jia J, Parikh H, Xiao W, et al. An integrated transcriptome and epigenome analysis identifies a novel candidate gene for pancreatic cancer[J]. BMC Medical Genomics, 2013, 6(1):33.
[97] Dumitriu A, Golji J, Labadorf A T, et al. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease[J]. BMC Medical Genomics, 2016, 9(1):5.
[98] Maurano M T, Humbert R, Rynes E, et al. Systematic localization ofcommon disease-associated variation in regulatory DNA[J]. Science, 2012, 337(6099):1190-1195.
文章导航

/