综述

微纳米马达在药物递送的应用进展

  • 万密密 ,
  • 陈田田 ,
  • 毛春 ,
  • 沈健
展开
  • 南京师范大学化学与材料科学学院, 生物医药功能材料国家地方联合工程研究中心, 南京 210023
万密密,副教授,研究方向为生物医用微纳米马达,电子信箱:wanmimi@njnu.edu.cn

收稿日期: 2021-04-08

  修回日期: 2021-05-11

  网络出版日期: 2021-11-08

基金资助

江苏省重点研发计划社会发展面上项目(BE2019744)

Micro/nanomotor for drug delivery

  • WAN Mimi ,
  • CHEN Tiantian ,
  • MAO Chun ,
  • SHEN Jian
Expand
  • National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

Received date: 2021-04-08

  Revised date: 2021-05-11

  Online published: 2021-11-08

摘要

微纳米马达药物递送技术是一种基于药物载体自身可发生自主运动的新型体内药物递送模式,可以在无损模式下促进治疗药物在病变部位的有效富集、滞留与渗透。简述了微纳米马达药物递送技术的研究进展,阐述了微纳米马达的给药方式、药物负载方式、微纳米马达药物递送体系的靶向能力、微纳米马达在生理环境下的药物递送运动、微纳米马达自主运动在提高细胞摄取和组织渗透性方面的促进作用,以及微纳米马达药物递送体系的具体应用案例等,展望了该领域的未来发展趋势。

本文引用格式

万密密 , 陈田田 , 毛春 , 沈健 . 微纳米马达在药物递送的应用进展[J]. 科技导报, 2021 , 39(20) : 116 -125 . DOI: 10.3981/j.issn.1000-7857.2021.20.011

Abstract

Micro/nanomotor drug delivery technology is a new drug delivery mode in vivo based on the self-motion of the drug carrier, which can promote the effective enrichment, retention and penetration of the therapeutic drugs in the lesion site in a nondestructive mode. Its high performance encourages the scientific community to make more effort to accelerate the development of micro/nanomotor in the biomedical field, to find a new way to solve some important traditional biomedical problems at the micro/nano-level, and to establish new principles of the disease treatment and the possible application models. This paper reviews the research progress of micro/nanomotor drug delivery technology, including the drug delivery mode, the drug loading mode, the targeting ability of the micro/nanomotor drug delivery system, the drug delivery movement of micro/nanomotor in the physiological environment, the promotion effect of the autonomous movement of micro/nanomotor in improving the cell uptake and the tissue permeability, and the drug delivery mechanism of micro/nanomotor. Finally, the future development trend of this field is prospected.

参考文献

[1] Lu W J, Yao J, Zhu X, et al. Nanomedicines:Redefining traditional medicine[J]. Biomedicine & Pharmacotherapy, 2021, 134:111103.
[2] Sun T M, Zhang Y S, Pang B, et al. Engineered nanoparticles for drug delivery in cancer therapy[J]. Angewandte Chemie-International Edition, 2014, 53(46):12320-12364.
[3] Guo H, Li F P, Qiu H P, et al. Synergistically enhanced mucoadhesive and penetrable polypeptide nanogel for efficient drug delivery to orthotopic bladder cancer[J]. Research, 2020, 2020:8970135.
[4] Zhang X X, Wang Y T, Chi J J, et al. Smart microneedles for therapy and diagnosis[J]. Research, 2020, 2020:7462915.
[5] Sindhwani S, Syed A M, Ngai J, et al. The entry of nanoparticles into solid tumours[J]. Nature Materials, 2020, 19(5):566-575.
[6] 刘美焕, 涂彬彬, 刘璐, 等. 自驱动微纳米马达在主动药物递送中的应用进展[J]. 南方医科大学学报, 2020, 40(3):445-452.
[7] Stylianopoulos T. EPR-effect:Utilizing size-dependent nanoparticle delivery to solid tumors[J]. Therapeutic delivery, 2013, 4(4):421-423.
[8] Ding Y X, Xu Y J, Yang W Z, et al. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy[J]. Nano Today, 2020, 35:100970.
[9] Sun D X, Zhou S, Gao W. What went wrong with anticancer nanomedicine design and how to make it right[J]. ACS Nano, 2020, 14(10):12281-12290.
[10] Zhang C Y, Yan L, Wang X, et al. Progress, challenges, and future of nanomedicine[J]. Nano Today, 2020, 35:101008.
[11] Wu Z G, Wei Q, Dong M D, et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye[J]. Science Advances, 2018, 4(11):eaat4388.
[12] Zhang L F, Chen C R, Li J X, et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection[J]. Nature Communications, 2017, 8:272.
[13] Singh A V, Ansari M H D, Dayan C B, et al. Multifunctional magnetic hairbot for untethered osteogenesis, ultrasound contrast imaging and drug delivery[J]. Biomaterials, 2019, 219:119394.
[14] Wan M M, Wang Q, Li T, et al. Platelet-derived porous nanomotor for thrombus therapy[J]. Science Advances, 2020, 6(22):eaaz9014.
[15] Xuan M J, Shao J X, Wang W, et al. Self-propelled nanomotors for thermomechanically percolating cell membranes[J]. Angewandte Chemie-International Edition, 2018, 57(38):12463-12467.
[16] Wan M M, Wang Q, Li X Y, et al. Systematic research and evaluation models of nanomotors for cancercombined therapy[J]. Angewandte Chemie-International Edition, 2020, 59(34):14458-14465.
[17] Chen Z J, Xia T, Zhang Z L, et al. Enzyme-powered janus nanomotors launched from intratumoral depots to address drug delivery barriers[J]. Chemical Engineering Journal, 2019, 375:122109.
[18] Llopis-Lorente A, Garcia-Fernandez A, Murillo-Cremaes N, et al. Ezyme-powerd gated mesoporous silica nanomotors for on-command intracellular payload delivery[J]. ACS Nano, 2019(13):12171-12183.
[19] Xu C, Wang S H, Wang H, et al. Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy[J]. Nano Letters, 2021, 21(5):1982-1991.
[20] Guo J H, Gallegos J J, Fan D L, et al. Electric-fieldguided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices[J]. ACS Nano, 2018, 12(2):1179-1187.
[21] Pal M, Somalwar N, Singh A, et al. Maneuverability of magnetic nanomotors inside living cells[J]. Advance Materials, 2018, 30(22):1800429.
[22] Wu Z G, Gao W, Lin X K, et al. Superfast near-infrared light-driven polymer multilayer rockets[J]. Small, 2015, 12(5):577-582.
[23] Zhou D K, Zhuang R C, Chang X C, et al. Enhanced light-harvesting efficiency and adaptation:A review on visible-light-driven micro/nanomotors[J]. Research, 2020, 2020:6821595.
[24] Xiong K, Xu L L, Lin J W, et al. Mg-based micromotors with motion responsive to dual stimuli[J]. Research, 2020, 2020:6213981.
[25] Dong C Y, Hong S, Zheng D W, et al. Multifunctionalized gold sub-nanometer particles for sensitizing radiotherapy against glioblastoma[J]. Small, 2020, 17(5):2006582.
[26] Zhang L F, Gao W, Kagan D, et al. Cargo-towing fuelfree magnetic nanoswimmers for targeted drug delivery[J]. Small, 2012, 8(3):460-467.
[27] Joseph A, Contini C, Cecchin D, et al. Chemotactic synthetic vesicles:Design and applications in blood-brain barrier crossing[J]. Science Advances, 2017, 3(8):e1700362.
[28] Lin R Y, Yu W Q, Chen X C, et al. Self-propelled micro/nanomotors for tumor targeting delivery and therapy[J]. Advanced Healthcare Materials, 2020, 10(1):2001212.
[29] 朱芳艳, 张田忠. 纳米马达的驱动机理研究进展[J]. 自然杂志, 2021, 43(1):9-17.
[30] 官建国. 自驱动微纳米马达[J]. 光学与光电技术, 2020, 18(2):7-11.
[31] 刘聪慧, 黄金荣, 宋永超, 等. 微纳米马达的运动控制及其在精准医疗中的应用[J]. 中国科学:化学, 2017, 47(1):29-39.
[32] Ji F D, Li T L, Yu S M, et al. Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors[J]. ACS Nano, 2021, 15(3):5118-5128.
[33] Yu S M, Ma N Z, Yu H, et al. Self-propelled janus microdimer swimmers under a rotating magnetic field[J]. Nanomaterials, 2020, 9(12):1672.
[34] Chang X C, Chen C R, Li J X, et al. Motile micropump based on synthetic micromotors for dynamic micropatterning[J]. ACS Applied Materials & Interfaces, 2019, 11(31):28507-28514.
[35] Ren L Q, Liu W, Wang W, et al. 3D steerable, acoustically powered microswimmers for single particle manipulation[J]. Science Advances, 2019, 5(10):eaax3084.
[36] Zhang H Y, Li Z S, Gao C Y, et al. Dual-responsive biohybrid neutrobots for active target delivery[J]. Science Robotics, 2021, 6(52):9519eaaz.
[37] Dong R F, Hu Y, Wu Y F, et al. Visible-light-driven BiOI-based janus micromotor in pure water[J]. Journal of the American Chemical Society, 2017, 139(5):1722-1725.
[38] Poon W, Kingston B R, Ouyang B, et al. A framework for designing delivery systems[J]. Nature Nanotechnology, 2020, 15(10):819-829.
[39] Zhao G J, Viehrig M, Pumera M, et al. Challenges of the movement of catalytic micromotors in blood[J]. Lab on a Chip, 2013, 13(10):1930-1936.
[40] Lin Z H, Fan X J, Sun M M, et al. Magnetically actuated peanut colloid motors for cell manipulation and patterning[J]. ACS Nano, 2018, 12(3):2539-2545.
[41] Shao J X, Shen G Z, Cao S P, et al. Erythrocyte membrane modified janus polymeric motors for thrombus therapy[J]. ACS Nano, 2018, 12(3):4877-4885.
[42] Alapan Y, Bozuyuk U, Erkoc P, et al. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow[J]. Science Robotics, 2020, 5(42):eaba5726.
[43] Zhang J T, Chen Z J, Wang S B, et al. Self-propelling micro-/nano-motors:Mechanisms, applications, and challenges in drug delivery[J]. International Journal of Pharmaceutics, 2021, 596:20275.
[44] Martin A, Soto F, Zhang L F, et al. Single cell real-time miRNAs sensing based on nanomotors[J]. ACS Nano, 2015, 9(7):6756-6764.
[45] Peng F, Men Y J, Tu Y F, et al. Nanomotor-based strategy for enhanced penetration across vasculature model[J]. Advanced Functional Materials, 2018, 28(25):1706117.
[46] Walker D, Käsdorf B T, Jeong H H, et al. Enzymatically active biomimetic micropropellers for the penetration of mucin gels[J]. Science Advances, 2015, 1(11):e1500501.
[47] Li J X, Liu W J, Zhang L F, et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract[J]. ACS Nano, 2016, 10(10):9536-9542.
[48] Gao W, Dong R F, Li J X, et al. Artificial micromotors in the mouse's stomach:A step toward in vivo use of synthetic motors[J]. ACS Nano, 2015, 9(1):117-123.
[49] Mackman N. Triggers, targets and treatments for thrombosis[J]. Nature, 2008, 451(4181):914-918.
[50] Siddiqui T I, Kumar A K S, Dikshit D K. Platelets and atherothrombosis:Causes, targets and treatments for thrombosis[J]. Current Medicinal Chemistry, 2013, 20(22):2779-2797.
[51] Koupenova M, Clancy L, Corkrey H A, et al. Circulating platelets as mediators of immunity, inflammation, and thrombosis[J]. Circulation Research, 2018, 122(2):337-351.
[52] Pieters M, Wolberg A S. Fibrinogen and fibrin:An illustrated review[J]. Research and Practice in Thrombosis Haemostasis, 2019, 3(2):161-172.
[53] Jung E, Kang C, Lee J, et al. Molecularly engineered theranostic nanoparticles for thrombosed vessels:H2O2-activatable contrast-enhanced photoacoustic imaging and antithrombotic therapy[J]. ACS Nano, 2018, 12(1):392-401.
[54] B. Liu Kenry, Bio-orthogonal click chemistry for in vivo bioimaging[J]. Trends in Chemistry, 2019, 1(8):763-778.
[55] Wang T T, Yuan C X, Dai B Y, et al. Click-chemistrymediated rapid microbubble capture for acute thrombus ultrasound molecular imaging[J]. Chembiochem, 2017, 18(14):1364-1368.
[56] Angelo J P, Chen S J, Ochoa M, et al. Review of structured light in diffuse optical imaging[J]. Journal of Biomedical Optics, 2019, 24(7):071602.
[57] Minchinton A I, Tannock I F. Drug penetration in solid tumours[J]. Nature Reviews Cancer, 2006, 6(8):538-592.
[58] Tang S S, Zhang F Y, Gong H, et al. Enzyme-powered janus platelet cell robots for active and targeted drug delivery[J]. Science Robotics, 2020, 5(43):eaba6137.
[59] Hortelão A C, Patiño T, Perez-Jiménez A, et al. Enzyme-powered nanobots enhance anticancer drug delivery[J]. Advanced Functional Materials, 2018, 28(25):1705086.
[60] Hortelão A C, Carrascosa R, Murillo-Cremaes N, et al. Targeting 3D bladder cancer spheroids with urease-powered nanomotors[J]. ACS Nano, 2019, 13(1):429-439.
[61] Hoop M, Ribeiro A S, Rösch D, et al. Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy[J]. Advanced Functional Materials, 2018, 28(25):1705920.
[62] Wan M M, Chen H, Liu Z Y, et al. Nitric oxide-driven nanomotor for deep tissue penetration and multidrug resistance reversal in cancer therapy[J]. Advanced Science, 2021, 8(3):2002525.
[63] Vong L B, Yoshitomi T, Matsui H, et al. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer[J]. Biomaterials, 2015, 55:54-63.
[64] Zhang Y Z, Li Y Y. Inflammatory bowel disease:Pathogenesis[J]. World Journal of Gastroenterol, 2014, 20(1):91-99.
[65] Rahier J F, Magro F, Abreu C, et al. Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease[J]. Journal of Crohns & Colitis, 2014, 8(6):443-468.
[66] Li J X, Zhang L F, Gao W W, et al. Micromotors spontaneously neutralize gastric acid for pH-responsive payload release[J]. Angewandte Chemie-International Edition, 2017, 56(8):2156-2160.
[67] Wu Z G, Li L, Yang Y R, et al. A microrobotic system guided by photoacousticcomputed tomography for targeted navigation in intestines in vivo[J]. Science Robotics, 2019, 4(32):eaax0613.
[68] Wu Z G, Lin X K, Zou X, et al. Biodegradable proteinbased rockets for drug transportation and light-triggered release[J]. ACS Applied Materials Interfaces, 2015, 7(1):250-255.
文章导航

/