综述

面向大规模个性化生产的韧性制造系统

  • 林文广 ,
  • 赖荣燊 ,
  • 肖人彬
展开
  • 1. 厦门理工学院机械与汽车工程学院, 厦门 361024;
    2. 华中科技大学人工智能与自动化学院, 武汉 430074
林文广,讲师,研究方向为数据驱动产品设计,电子信箱:linwg@xmut.edu.cn

收稿日期: 2021-03-08

  修回日期: 2021-05-30

  网络出版日期: 2021-12-21

基金资助

国家自然科学基金项目(51875220);福建省社会科学基金项目(FJ2021B128);福建省中青年教师教育科研项目(JAT200467)

Resilient manufacturing systems for mass personalization

  • LIN Wenguang ,
  • LAI Rongshen ,
  • XIAO Renbin
Expand
  • 1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China;
    2. School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 2021-03-08

  Revised date: 2021-05-30

  Online published: 2021-12-21

摘要

随着新一代信息技术和先进制造技术的发展,大规模个性化生产逐渐取代大规模定制化生产成为当前主流生产模式。韧性制造系统突出其应对系统内外突发事件的响应和恢复能力,成为支撑大规模个性化生产的关键技术。阐述了生产模式与制造系统的协同演化过程,指出大规模个性化生产模式应与韧性制造系统相适应,分析了系统韧性内涵并综述制造系统韧性研究现状;基于供应链网络和制造企业内部加工设备网络的韧性过程分析,构建了基于物料流视角的制造供应链网络结构模型,讨论了制造系统韧性问题;分析了韧性制造系统的激励来源、韧性响应过程和特征以及关键支撑技术,提出了面向大规模个性化生产的韧性制造系统的评估指标与优化策略;展望了面向大规模个性化生产的韧性制造系统的热点研究方向。

本文引用格式

林文广 , 赖荣燊 , 肖人彬 . 面向大规模个性化生产的韧性制造系统[J]. 科技导报, 2021 , 39(22) : 75 -84 . DOI: 10.3981/j.issn.1000-7857.2021.22.009

Abstract

With the development of the new generation information technology and the advanced manufacturing technology, the mass personalization has gradually replaced the mass customization as the current mainstream production mode. The resilient manufacturing system shows its ability to respond to and recover from the emergencies or the interruptions inside and outside the manufacturing system, and has become a key technology to support the mass personalization production. First, the co-evolution process of the production mode and the manufacturing system is discussed, focusing on the adaptive relation between the mass personalization production and the resilient manufacturing system, and the connotation of the system resilience is highlighted, as well as the research status of the resilience of the manufacturing system. Based on the analysis of the resilience process of the manufacturing system in the two levels of the supply chain network and the manufacturing enterprise's internal processing equipment network, a manufacturing supply chain network structure model is built based on the perspective of the material flow for further analyzing the resilience issues of the manufacturing system. The sources of the incentives, the resilience response processes and their characteristics, and the key supporting technologies of the resilient manufacturing systems are analyzed, and the evaluation index and the optimization strategies of the resilient manufacturing systems for the mass personalization production are suggested. Finally, the hot research directions of the resilient manufacturing systems for the mass personalization production are outlined.

参考文献

[1] 景轩, 姚锡凡. 大数据驱动的云雾制造体系架构[J]. 计算机集成制造系统, 2019, 25(9):2119-2139.
[2] 肖人彬, 赖荣燊, 李仁旺. 从大规模定制化设计到大规模个性化设计[J]. 南昌工程学院学报, 2021, 40(1):1-12.
[3] Tetsuo T, Florian M. Resilient architecture for cyberphysical production systems[J]. CIRP Annals -Manufacturing Technology, 2018, 67(1):161-164.
[4] 梁福军, 宁汝新. 可重构制造系统理论研究[J]. 机械工程学报, 2003, 39(6):36-43.
[5] Moghaddam M, Deshmukh A. Resilience of cyber-physical manufacturing control systems[J]. Manufacturing Letters, 2019, 20:40-44.
[6] Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973, 4(1):1-23.
[7] Madni A M, Jackson S. Towards a conceptual framework for resilience engineering[J]. IEEE Systems Journal, 2009, 3(2):181-191.
[8] 李倩, 郭恩栋, 李玉芹, 等. 供水系统地震韧性评价关键问题分析[J]. 灾害学, 2019, 34(2):83-88.
[9] Kusiak A. Open manufacturing:A design-for-resilience approach[J]. International Journal of Production Research, 2020, 58(15):4647-4658.
[10] Bruneau M, Reinhorn A. Overview of the resilience concept[C]//The 8th US National Conference on Earthquake Engineering 2006. San Franciscos:Earthquake Engineering Research Institute, 2006:3168-3176.
[11] Chaudry M, Ekins P, Ramachandran K, et al. Building a resilient UK energy system[R]. London:UK Energy Research Centre, 2011.
[12] 李凡, 张杰勇. 指挥信息系统网络结构的韧性问题研究[J]. 电光与控制, 2020, 27(4):49-54.
[13] 鞠平, 王冲, 辛焕海, 等. 电力系统的柔性、弹性与韧性研究[J]. 电力自动化设备, 2019, 39(11):1-7.
[14] Tang C S. Robust strategies for mitigating supply chain disruptions[J]. International Journal of Logistics:Research and Applications, 2006, 9(1):33-45.
[15] 樊雪梅, 卢梦媛. 新冠疫情下汽车企业供应链韧性影响因素及评价[J]. 工业技术经济, 2020, 39(10):21-28.
[16] Namdar J, Li X, Sawhney R, et al. Supply chain resilience for single and multiple sourcing in the presence of disruption risks[J]. International Journal of Production Research, 2018, 56(6):2339-2360.
[17] Lee S, Gu X, Ni J. Stochastic maintenance opportunity windows for unreliable two-machine one-buffer system[J]. Expert Systems with Applications, 2013, 40(13):5385-5394.
[18] Gu X, Jin X, Ni J, et al. Manufacturing system design for resilience[J]. Procedia CIRP, 2015, 36:135-140.
[19] Gu X, Jin X, Ni J. Resilience measures of manufacturing systems under disruptions[C]//Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference, MSEC2014. Detroit:ASME, 2014:V001T04A007(10).
[20] Caputo A C, Pelagagge P M, Salini P. A methodology to estimate resilience of manufacturing plants[J]. IFAC-PapersOnLine, 2019, 52(13):808-813.
[21] Bergmann U, Heinicke M. Resilience of productions systems by adapting temporal or spatial organization[J]. Procedia CIRP, 2016, 57:183-188.
[22] Ljasenko S, Lohse N, Justham L. A comparison of the manufacturing resilience between fixed automation systems and mobile robots in large structure assembly[J]. Procedia CIRP, 2016, 57:235-240.
[23] 杜如虚. 中美制造工程比较分析与韧性智能制造系统[R]. 深圳:OFweek维科网及高科会, 2019.
[24] Kusiak A. Fundamentals of smart manufacturing:A multi-thread perspective[J]. Annual Reviews in Control, 2019, 47:214-220.
[25] Sheffi Y, Rice Jr J B. A supply chain view of the resilient enterprise[J]. MIT Sloan Management Review, 2005, 47(1):41-48.
[26] Vugrin E D, Warren D E, Ehlen M A. A resilience assessment framework for infrastructure and economic systems:Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane[J]. Process Safety Progress, 2011, 30(3):280-290.
[27] Liu J, Yang S, Wu A, et al. Multi-state throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer[J]. European Journal of Operational Research, 2012, 219(2):296-304.
[28] Diamantidis A C, Papadopoulos C T. Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines[J]. European Journal of Operational Research, 2009, 197(2):572-580.
[29] Burman M H. New results in flow line analysis[D]. Cambridge:Massachusetts Institute of Technology, 1995.
[30] 李仁旺, 肖人彬. 数字孪生驱动的大数据制造服务模式[J]. 科技导报, 2020, 38(14):116-125.
[31] Naghshineh B, Carvalho H. The impact of additive manufacturing on supply chain resilience[C]//Doctoral Conference on Computing, Electrical and Industrial Systems. Berlin:Springer, 2020:214-221.
[32] 张映锋, 郭振刚, 钱成, 等. 基于过程感知的底层制造资源智能化建模及其自适应协同优化方法研究[J]. 机械工程学报, 2018, 54(16):1-10.
[33] 肖智文, 王国庆, 朱建明, 等. 面向突发事件的电网韧性能力评价及构建方法[J]. 系统工程理论与实践,2019, 39(10):189-197.
[34] 程翔, 杨宜, 王泽然, 等. 民营经济韧性的评价体系构建与应用[J]. 北京联合大学学报(人文社会科学版), 2020, 18(3):79-88.
[35] 郑力, 江平宇, 乔立红, 等. 制造系统研究的挑战和前沿[J]. 机械工程学报, 2010, 46(21):124-136.
[36] 梁玉桃, 杜如虚. 有远见的公司都在发展韧性制造[N]. 中国科学报, 2020-09-07(004).
[37] Manuj I, Mentzer J T. Global supply chain risk management[J]. Journal of Business Logistics, 2008, 29(1):133-155.
文章导航

/