研究论文

基于联邦学习的新冠肺炎疫情跨区域智慧防控技术——以上海市实践为例

  • 钱学胜 ,
  • 吴寰宇 ,
  • 陈诚 ,
  • 黄晓燕 ,
  • 童庆 ,
  • 戴伟辉
展开
  • 1. 复旦大学智慧城市研究中心, 上海 200433;
    2. 复旦大学管理学院, 上海 200433;
    3. 澳门系统工程研究所, 中国澳门 999078;
    4. 上海市疾病预防控制中心, 上海 200336;
    5. 万达信息股份有限公司, 上海 201112
钱学胜,高级研究员,研究方向为数据智能与融合应用,电子信箱:qianxuesheng@fudan.edu.cn

收稿日期: 2021-09-02

  修回日期: 2021-09-30

  网络出版日期: 2022-01-08

基金资助

国家重点研发计划项目(2018YFB2101100);教育部哲学社会科学研究重大课题攻关项目(19JZD010);国家自然科学基金面上项目(71971066);教育部人文社会科学研究规划基金项目(18YJA630019);上海市科技创新行动计划项目(20492420102);上海市哲学社会科学规划课题(2019BGL031)

Cross-region smart COVID-19 pandemic management and control based on federated learning: With Shanghai as an example

  • QIAN Xuesheng ,
  • WU Huanyu ,
  • CHEN Cheng ,
  • HUANG Xiaoyan ,
  • TONG Qing ,
  • DAI Weihui
Expand
  • 1. Smart City Research Center, Fudan University, Shanghai 200433, China;
    2. School of Management, Fudan University, Shanghai 200433, China;
    3. Macau Institute of System Engineering, Macau University of Science and Technology, Macau 999078, China;
    4. Shanghai Center for Disease Control and Prevention, Shanghai 200336, China;
    5. Wonders Information Co., Ltd., Shanghai 201112, China

Received date: 2021-09-02

  Revised date: 2021-09-30

  Online published: 2022-01-08

摘要

新冠肺炎病毒不断变异的毒株的系列新特征,给传统的传染病防控方法与公共卫生防控体系带来了巨大的挑战。充分发挥数字技术在抗疫过程中的关键赋能价值,全面构建精准的常态化监测预警及智慧防控体系,系应对上述挑战的有效途径。通过对疫情智慧防控体系构成要素的剖析,揭示联邦学习对建立跨区域、跨部门的智慧疫情防控体系的关键路径作用。并基于跨区域涉疫数据分类及防控工作要点,研究设计了基于联邦学习的跨区域疫情智慧防控技术及其平台应用。该应用已在上海市以及长三角区域的抗疫实践中取得了显著成效。

本文引用格式

钱学胜 , 吴寰宇 , 陈诚 , 黄晓燕 , 童庆 , 戴伟辉 . 基于联邦学习的新冠肺炎疫情跨区域智慧防控技术——以上海市实践为例[J]. 科技导报, 2021 , 39(24) : 96 -107 . DOI: 10.3981/j.issn.1000-7857.2021.24.011

Abstract

SARS-CoV-2 and its variants, the viruses that cause the COVID-19 pandemic, have some new characteristics, such as the high transmissibility, the long incubation period, the sweeping susceptible population, and the high environmental endurance, so a key question of the pandemic management and control is monitoring the asymptomatic transmission in daily life and socioeconomic activities, especially, the wide-range of cross-region spread. These features pose a great challenge to the traditional pandemic management and control methods and the global public health surveillance and control system. An effective way to tackle this challenge is making full use of the digital technology in the pandemic management and control, and building an accurate regular epidemiological surveillance and smart pandemic management and control system. By analyzing the essential factors of a smart pandemic management and control system, the critical role of the federated learning in the practice of the cross-region and cross-department smart pandemic management and control is shown. According to the classifications of the cross-region pandemic-related data and the pandemic management and control requirements, the technology and the application of the cross-region smart pandemic management and control based on the federated learning are explored. This method is successfully applied in the COVID-19 pandemic management and control in Shanghai and Yangtze River Delta, providing a new pathway for the integrated decision-making and targeted pandemic management and control in China. This method is also instrumental for other countries in the pandemic management and control.

参考文献

[1] 习近平出席统筹推进新冠肺炎疫情防控和经济社会发展工作部署会议并发表重要讲话[EB/OL].[2021-08-17]. http://www.gov.cn/xinwen/2020-02/23/content_5482453.htm.
[2] World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19-27 July 2020[EB/OL].[2021-08-17]. https://www.who.int/director-general/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19--27-july-2020.
[3] Lai S, Ruktanonchai N W, Zhou L, et al. Effect of nonpharmaceutical interventions to contain COVID-19 in China[J]. Nature, 2020, 585(7825):410-413.
[4] 全国抗击新冠肺炎疫情表彰大会在京隆重举行 习近平向国家勋章和国家荣誉称号获得者颁授勋章奖章并发表重要讲话[EB/OL].[2021-08-17]. http://www.gov.cn/xinwen/2020-09/08/content_5541722.htm.
[5] Li B, Deng A, Li K, et al. Viral infection and Transmission in a large well-traced outbreak caused by the Delta SARS-CoV-2 variant[J/OL]. MedRxiv, 2021, https://doi.org/10.1101/2021.07.07.21260122.
[6] World Health Organization. WHO press conference on coronavirus disease (COVID-19)-21 June 2021[EB/OL].[2021-08-17]. https://www.who.int/multi-media/details/who-press-conference-on-coronavirus-disease-(covid-19)--21-june-2021.
[7] Liu C, Ginn H M, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum[J]. Cell, 2021, 184:4220-4236.
[8] World Health Organization. WHO press conference on coronavirus disease (COVID-19)-30 July 2021[EB/OL].[2021-08-17]. https://www.who.int/multi-media/details/who-press-conference-on-coronavirus-disease-(covid-19)--0-july-2021.
[9] World Health Organization. WHO press conference on coronavirus disease (COVID-19)-18 June 2021[EB/OL].[2021-08-17]. https://www.who.int/multi-media/details/who-press-conference-on-coronavirus-disease-(covid-19)--18-june-2021.
[10] World Health Organization. Tracking SARS-CoV-2 variants[EB/OL].)[2021-08-17]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
[11] GISAID. hCov-19 Variants-VOI Lambda GR/452Q. V1(C. 37) first detected in Peru[DB/OL].[2021-08-17]. https://www.gisaid.org/hcov19-variants/.
[12] World Health Organization. WHO press conference on coronavirus disease (COVID-19)-7 July 2021[EB/OL].[2021-08-17]. https://www.who.int/multi-media/details/who-press-conference-on-coronavirus-disease-(covid-19)--7-july-2021.
[13] 董言,姚华.我国传染病网络直报的现状与发展[J].疾病预防控制通报, 2012, 27(1):92-94.
[14] Riou J, Althaus C L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-NCoV), December 2019 to January 2020[J]. Eurosurveillance, 2020, 25(4):2000058.
[15] Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. New England Journal of Medicine, 2020, 382(13):1199-1207.
[16] Rasmussen A L, Popescu S V. SARS-CoV-2 transmission without symptoms[J]. Science, 2021, 371(6535):1206-1207.
[17] Anderson R M, May R M. Infectious diseases of humans:Dynamics and control[M]. New York:Oxford University Press, 1991.
[18] 游光荣,游翰霖,赵得智,等.新冠肺炎疫情传播模型及防控干预措施的因果分析评估[J].科技导报, 2020, 38(6):90-96.
[19] 王建伟,崔秩玮,潘潇雄,等.基于广义SEIR模型的新冠肺炎传播机制及干预效果仿真[J].科技导报, 2020, 38(22):130-138.
[20] Woolhouse M E, Rambaut A, Kellam P. Lessons from Ebola:Improving infectious disease surveillance to inform outbreak management[J]. Science Translational Medicine, 2015, 7(307):307.
[21] Read J M, Bridgen J R E, Cummings D A T, et al. Novel coronavirus 2019-nCoV:Early estimation of epidemiological parameters and epidemic predictions[J]. Philosophical Transactions of The Royal Society B Biological Sciences, 2021, 376(1829):20200265.
[22] 曹志冬,曾大军,张清鹏,等.新冠肺炎疫情的复杂性特征与分析研判[J].中国科学基金, 2020, 34(6):675-682.
[23] World Health Organization. International health regulations (2005)2nd ed[M]. Geneva:WHO Press, 2008.
[24] 习近平.构建起强大的公共卫生体系 为维护人民健康提供有力保障[J].求是, 2020(18):4-11.
[25] Budd J, Miller B S, Manning E M, et al. Digital technologies in the public-health response to COVID-19[J]. Nature Medicine, 2020, 26(8):1183-1192.
[26] 习近平总书记在专家学者座谈会上的重要讲话指明科研攻坚方向[EB/OL].[2021-08-17]. http://www.xinhuanet.com/politics/leaders/2020-06/04/c_1126074999.htm.
[27] 关婷,薛澜,赵静.技术赋能的治理创新:基于中国环境领域的实践案例[J].中国行政管理, 2019(4):58-65.
[28] Liang F. COVID-19 and health code:How digital platforms tackle the pandemic in China[J]. SAGE Public Health Emergency Collection, 2020, 6(3):1-4.
[29] 张辉,刘奕.基于"情景-应对"的国家应急平台体系基础科学问题与集成平台[J].系统工程理论与实践, 2012, 32(5):947-953.
[30] Xie T, Ni M, Zhang Z, et al. Parallel simulation decision-making method for a response to unconventional public health emergencies based on the scenario-response paradigm and discrete event system theory[J]. Disaster Medicine and Public Health Preparedness, 2019, 13(5-6):1017-1027.
[31] Chari V V, Kirpalani R, Phelan C. The Hammer and the Scalpel:On the Economics of Indiscriminate versus Targeted Isolation Policies during Pandemics[J]. Review of Economic Dynamics, 2020, doi:10.1016/j.red.2020.11.004.
[32] 习近平主持中共中央政治局会议分析 研究当前经济形势和经济工作[EB/OL].[2021-08-17]. http://www.gov.cn/xinwen/2021-07/30/content_5628481.htm.
[33] 王宏伟.统筹协调——新时代应急管理的核心能力[J].中国安全生产, 2019, 14(2):22-27.
[34] 陶鹏,张家俊.新冠肺炎疫情联防联控机制的功能图景与预案优化[J].河海大学学报(哲学社会科学版), 2021, 23(3):31-37.
[35] 张成岗,李佩.科技支撑社会治理现代化:内涵、挑战及机遇[J].科技导报, 2020, 38(14):134-141.
[36] 姜长云,姜惠宸.新冠肺炎疫情防控对国家应急管理体系和能力的检视[J].管理世界, 2020, 36(8):8-18, 31, 19.
[37] Goldberg I, Wagner D, Brewer E. Privacy-enhancing technologies for the internet[C]//Proceedings IEEE COMPCON 97. Digest of Papers. San Jose:IEEE Computer Socical Press, 1997:103-109.
[38] 闫树,吕艾临.隐私计算发展综述[J].信息通信技术与政策, 2021(6):3-11.
[39] McMahan B, Moore E, Ramage D, et al. Communicationefficient learning of deep networks from decentralized data[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Massachusetts:MIT Press, 2017.
[40] Li L, Fan Y, Tse M, et al. A review of applications in federated learning[J]. Computers&Industrial Engineering, 2020, 149(5):106854.
[41] 上海市长:此轮疫情已得到控制[EB/OL].[2021-08-17]. http://sh.people.com.cn/n2/2021/0127/c134768-34551230.html.
[42] 习近平.全面提高依法防控依法治理能力 健全国家公共卫生应急管理体系[J].求是, 2020(5):4-8.
[43] 屠鸿薇,钟若曦,肖建鹏,等.广东省新型冠状病毒肺炎分区分级防控策略研究[J].中国公共卫生, 2020, 36(4):486-492.
[44] 漆翠芳,杨力仁,杨子轩,等.影响新型冠状病毒肺炎省际传播与发展的因素:基于30个省市的数据分析[J].西安交通大学学报(医学版), 2020, 41(5):757-763.
[45] 为何上海流调报告值得点赞 不让隐私成谈资[EB/OL].[2021-08-17]. https://m.gmw.cn/2021-01/23/content_1302065235.htm.
[46] 软硬兼施!上海又交出了一份"模范作业"[EB/OL].[2021-08-18]. http://jl.people.com.cn/n2/2021/0818/c349771-34872402.html.
[47] 国家卫健委疾病预防控制局.全国新冠肺炎疫情防控经验研讨会在上海举办[EB/OL].[2021-09-27]. http://www.nhc.gov.cn/xcs/yqfkdt/202109/d3bc7575e0b24e599ca3d4c8d8c61d5a.shtml.
[48] 汪光焘,李芬.推动新型智慧城市建设——新冠肺炎疫情对城市发展的影响和思考[J].中国科学院院刊, 2020, 35(8):1024-1031.
[49] 钱学胜,凌鸿,黄丽华.城市数字化转型 打造具有世界影响力的国际数字之都[J].上海信息化, 2021(1):6-12.
[50] 上海市卫生健康委员会.中共上海市委、上海市人民政府关于完善重大疫情防控体制机制健全公共卫生应急管理体系的若干意见[EB/OL].[2021-08-17]. http://wsjkw.sh.gov.cn/sh1/20200408/bdc1a3241d214d76b69ae11980a7e64f.html.
文章导航

/