专题:2021年科技热点回眸

2021年光学热点回眸

  • 卢战韬 ,
  • 李林骏 ,
  • 邱丽娟 ,
  • 谢兴龙 ,
  • 朱健强
展开
  • 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
卢战韬,博士研究生,研究方向为高功率激光和ICF聚变物理,电子信箱:luzhantao@siom.ac.cn

收稿日期: 2021-12-03

  修回日期: 2021-12-28

  网络出版日期: 2022-02-18

基金资助

国家自然科学基金项目(12074399);科技部国际合作项目(2021YFE0116700)

Memorable sounds in the optics and photonics in 2021

  • LU Zhantao ,
  • LI Linjun ,
  • QIU Lijuan ,
  • XIE Xinglong ,
  • ZHU Jianqiang
Expand
  • National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

Received date: 2021-12-03

  Revised date: 2021-12-28

  Online published: 2022-02-18

摘要

回顾了光学领域在2021年的重大进展,盘点了微纳光学、强激光与超快光学、超分辨与成像技术、量子计算与光通信、生物光子学、量子光学、光学探测与整形、涡旋光、孤子光学、人工智能、光学传感、太赫兹光学、光伏光电、照明显示和拓扑光子学等15个光学技术研究领域的重大进展,探讨了其在未来可能会对人类生存及生活方式产生的巨大影响。

本文引用格式

卢战韬 , 李林骏 , 邱丽娟 , 谢兴龙 , 朱健强 . 2021年光学热点回眸[J]. 科技导报, 2022 , 40(1) : 25 -51 . DOI: 10.3981/j.issn.1000-7857.2022.01.002

Abstract

Since the birth of laser, optics and photonics have penetrated into all aspects of people's life. This article reviews the 2021 major progress in the field of optics and photonics and draws up an inventory of fifteen optical research directions, in which the related research may likely have enormous impact on human existence and way of life in the future.

参考文献

[1] National Ignition Facility experiment puts researchers at threshold of fusion ignition[EB/OL].(2021-08-18)[2021-12-01].https://www.llnl.gov/news/national-ignition-facility-experiment-puts-researchers-threshold-fusion-ignition.
[2] Stockman M I.Nanoplasmonics:Past, present, and glimpse into future[J].Optics Express, 2011, 19(22):22029-22106.
[3] Halas N J, Lal S, Chang W S, et al.Plasmons in strongly coupled metallic nanostructures[J].Chemical Reviews, 2011, 111(6):3913-3961.
[4] Valev V K, Baumberg J J, Sibilia C, et al.Chirality and chiroptical effects in plasmonic nanostructures:Fundamentals, recent progress, and outlook[J].Advanced Materials, 2013, 25(18):2517-2534.
[5] Zhang Y F, Fowler C F, Liang J H, et al.Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J].Nature Nanotechnology, 2021, 16(6):661.
[6] Guo X, Zhong J, Li B, et al.Full-color holographic display and encryption with full-polarization degree of freedom[J].Advanced Materials, 2021, 5742(5742):130-139.
[7] Rolland J P, Davies M A, Suleski T J, et al.Freeform optics for imaging[J].Optica, 2021, 8(2):161-176.
[8] Nikolov D K, Bauer A, Cheng F, et al.Metaform optics:Bridging nanophotonics and freeform optics[J].Science Advances, 2021, 7(18):eabe5112.
[9] Zeng S N, Pian S J, Su M Y, et al.Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J].Science, 2021, 373(6555):692-696.
[10] Camacho-Morales R, Rocco D, Xu L, et al.Infrared upconversion imaging in nonlinear metasurfaces[J].Advanced Photonics, 2021, 3(3):036002.
[11] Ma W L, Hu G W, Hu D B, et al.Ghost hyperbolic surface polaritons in bulk anisotropic crystals[J].Nature, 2021, 596(7872):362-366.
[12] Tian H, Liu J Q, Siddharth A, et al.Magnetic-free silicon nitride integrated optical isolator[J].Nature Photonics, 2021, 15(11):828-836.
[13] Danson C N, Haefner C, Bromage J, et al.Petawatt and exawatt class lasers worldwide[J].High Power Laser Science and Engineering, 2019, 7(3):1-53.
[14] Li Z Y, Kato Y, Kawanaka J.Simulating an ultra-broadband concept for Exawatt-class lasers[J].Scientific Reports, 2021, 11:151.
[15] 神光Ⅱ设施第九路皮秒拍瓦开展激光驱动质子加速实验取得重大进展[EB/OL].(2021-11-22)[2021-12-01].http://www.siom.cas.cn/xwzx/kydt/202111/t20211123_6267460.html.
[16] US Army demonstrates first laser weapon in "combat shoot-off"[EB/OL].(2021-08-18)[2021-12-01].https://optics.org/news/12/8/23.
[17] Wang W T, Feng K, Ke L T, et al.Free electron lasing at 27 nanometers based on a laser wakefield accelerator[J].Nature, 2021, 595(7868):516.
[18] Zhong H Z, Qian L J, Dai S Y, et al.Polarization-insensitive, high-gain parametric amplification of radially polarized femtosecond pulses[J].Optica, 2021, 8(1):62-69.
[19] Fang Y Q, Han M, Ge P P, et al.Photoelectronic mapping of the spin-orbit interaction of intense light fields[J].Nature Photonics, 2021, 15(2):115-120.
[20] Liu J D, Charlotte Z, Liu X P, et al.Coded-aperture broadband light field imaging using digital micromirror devices[J].Optica, 2021, 8(2):139-142.
[21] Zhou Z H, Liu W, He J J, et al.Far-field super-resolution imaging by nonlinearly excited evanescent waves[J].Advanced Photonics, 2021, 3(2):025001.
[22] Dong J R, Lu Y X, Xu Y, et al.Direct imaging of single-molecule electrochemical reactions in solution[J].Nature, 2021, 596:244-249.
[23] Wang B, Zheng M Y, Han J J, et al.Non-line-of-sight imaging with picosecond temporal resolution[J].Physical Review Letters, 2021, 127(5):053602.
[24] Liu X T, Wang J Y, Li Z P, et al.Non-line-of-sight reconstruction with signal-object collaborative regularization[J].Light:Science & Applications, 2021, 10:198.
[25] Wu J M, Lu Z, Jiang D, et al.Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J].Cell, 2021, 184(12):3318-3332.
[26] Zhong Q Y, Li A N, Jin R, et al.High-definition imaging using line-illumination modulation microscopy[J].Nature Methods, 2021, 18(3):309-315.
[27] Ding P P, Yao Y H, Qi D L, et al.Single-shot spectralvolumetric compressed ultrafast photography[J].Advanced Photonics, 2021, 3(4):045001.
[28] Kim K, Bittner S, Zeng Y, et al.Massively parallel ultrafast random bit generation with a chip-scale laser[J].Science, 2021, 371(6532):948-952.
[29] Liu X, Hu J, Li Z F, et al.Heralded entanglement distribution between two absorptive quantum memories[J].Nature, 2021, 594(7861):41-45.
[30] Pittaluga M, Minder M, Lucamarini M, et al.600-km repeater-like quantum communications with dual-band stabilization[J].Nature Photonics, 2021, 15(7):530.
[31] Luo L, Cheng D, Song B Q, et al.A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5[J].Nature Materials, 2021, 20(3):329-334.
[32] Liu H Y, Tian X H, Gu C S, et al.Drone-based entanglement distribution towards mobile quantum networks[J].National Science Review, 2020, 7(5):921-928.
[33] Liu H Y, Tian X H, Gu C S, et al.Optical-relayed entanglement distribution using drones as mobile nodes[J].Physical Review Letters, 2021, 126:020503.
[34] Hearing the Light[EB/OL].(2021-10-01)[2021-12-01].https://www.optica-opn.org/home/articles/volume_32/october_2021/features/hearing_the_light/.
[35] Goswami N, He Y H R, Deng Y, et al.Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity[J].Light:Science & Applications, 2021, 10(1):176.
[36] Zhang C H, Dong H Y, Zhang C, et al.Photonic skins based on flexible organic microlaser arrays[J].Science Advances, 2021, 7(31):eabh3530.
[37] Casacio C A, Madsen L S, Terrasson A, et al.Quantumenhanced nonlinear microscopy[J].Nature, 2021, 594(7862):201-206.
[38] Chen R H, Huang S S, Lin T T, et al.Photoacoustic molecular imaging-escorted adipose photodynamic-browning synergy for fighting obesity with virus-like complexes[J].Nature Nanotechnology, 2021, 16(4):455-465.
[39] Scientists create device that uses laser tweezers to trap viruses[EB/OL].(2021-11-01)[2021-12-01].https://optics.org/news/12/10/43.
[40] Li J G, Chen Z H, Liu Y R, et al.Opto-refrigerative tweezers[J].Science Advances, 2021, 7(26):eabh1101.
[41] Dai X, Fu W H, Chi H Y, et al.Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures[J].Nature Communications, 2021, 12(1):1292.
[42] Konishi H, Roux K, Helson V, et al.Universal pair-polaritons in a strongly interacting Fermi gas[J].Nature, 2021, 596(7873):509-513.
[43] Li Q W, Bao W, Nie Z Y, et al.A non-unitary metasurface enables continuous control of quantum photon-photon interactions from bosonic to fermionic[J].Nature Photonics, 2021, 15(4):267-271.
[44] Li G Z, Zheng Y L, Dutt A, et al.Dynamic band structure measurement in the synthetic space[J].Science Advances, 2021, 7(2):eabe4335.
[45] Yao J P, Wang L J, Chen J M, et al.Photon retention in coherently excited nitrogen ions[J].Science Bulletin, 2021, 66(15):1511-1517.
[46] Tradonsky C, Mahler S, Cai G D, et al.High-resolution digital spatial control of a highly multimode laser[J].Optica, 2021, 8(6):880-884.
[47] Yu S F, Zhang Z, Xia H Y, et al.Photon-counting distributed free-space spectroscopy[J].Light:Science & Applications, 2021, 10:212.
[48] Efremidis N, Goutsoulas M, Bongiovanni D, et al.Tunable self-similar Bessel-like beams of arbitrary order[J].Optics Letters, 2020, 45(7):1830-1833.
[49] Bongiovanni D, Li D H, Goutsoulas M, et al.Free-space realization of tunable pin-like optical vortex beams[J].Photonics Research, 2021, 9(7):1204-1212.
[50] Christopher S, Qian Y, Xue D, et al.Chirped dissipative solitons in driven optical resonators[J].Optica, 2021, 8(6):861-869.
[51] Liang C H, Ponomarenko S A, Wang F, et al.Temporal boundary solitons and extreme super thermal light statistics[J].Physical Review Letters, 2021, 127:053901.
[52] Salmela L, Tsipinakis N, Foi A, et al.Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J].Nature Machine Intelligence, 2021, 3(4):344.
[53] Genty G, Salmela L, Dudley J M, et al.Machine learning and applications in ultrafast photonics[J].Nature Photonics, 2021, 15(2):91-101.
[54] Tong L, Peng Z R, Lin R F, et al.2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware[J].Science, 2021, 373(6561):1353-1358.
[55] Altaqui A, Sen P, Schrickx H, et al.Mantis shrimp-inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging[J].Science Advances, 2021, 7(10):eabe3196.
[56] Liang Y Z, Sun H J, Cheng L H, et al.High spatiotemporal resolution optoacoustic sensing with photothermally induced acoustic vibrations in optical fibres[J].Nature Communications, 2021, 12:4139.
[57] Zhang B L, Ma Z Z, Ma J L, et al.1.4-mJ high energy terahertz radiation from lithium niobates[J].Laser & Photonics Reviews, 2021, 15(3):2000295.
[58] Zeng H X, Liang H J, Zhang Y X, et al.High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip[J].Nature Photonics, 2021, 15(10):751-757.
[59] Xu H X, Yan L X, Du Y C, et al.Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J].Nature Photonics, 2021, 15(6):426-430.
[60] Li N X, Niu X X, Li L, et al.Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility[J].Science, 2021, 373(6554):561-567.
[61] Shi X, Zuo Y, Zhai P, et al.Large-area display textiles integrated with functional systems[J].Nature, 2021, 591:240-245.
[62] Zhou B, Yan L, Huang J S, et al.NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice[J].Nature Photonics, 2021, 14:760-766.
[63] Liu M M, Wan Q, Wang H M, et al.Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J].Nature Photonics, 2021, 15(5):379-385.
[64] Chen J W, Wang J, Xu X B, et al.Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites[J].Nature Photonics, 2021, 15(3):238-244.
[65] Xia S Q, Kaltsas D, Song D H, et al.Nonlinear tuning of PT symmetry and non-Hermitian topological states[J].Science, 2021, 372(6537):72-76.
[66] Liu Y, Leung S, Li F F, et al.Bulk-disclination correspondence in topological crystalline insulators[J].Nature, 2021, 589(7842):381-385.
[67] Optics in 2021[EB/OL].(2021-12-01)[2021-12-05].https://www.optica-opn.org/home/articles/volume_32/december_2021/features/optics_in_2021/.
[68] 中国光学十大进展2021年候选成果推荐[EB/OL].(2021-11-29)[2021-12-01].http://www.opticsjournal.net/Columns/ZGGX?type=lntjList&year=2021.
文章导航

/