[1] 莎拉·斯图尔特·约翰逊.到火星去[M].中国航天液体推进剂研究中心,译.天津:天津人民出版社, 2021.
[2] 天问一号探测器着陆火星首批科学影像图揭幕[EB/OL].(2021-06-11)[2021-11-20].http://www.cnsa.gov.cn/n6758823/n6758838/c6812123/content.html.
[3] Cottaar S, Koelemeijer P.The interior of Mars revealed[J].Science, 2021, 373(6553):388-389.
[4] Stähler S C, Khan A, Banerdt W B, et al.Seismic detection of the martian core[J].Science, 2021, 373(6553):443-448.
[5] Khan A, Ceylan S, Driel M V, et al.Upper mantle structure of Mars from InSight seismic data[J].Science, 2021, 373(6553):434-438.
[6] Knapmeyer-Endrun B, Panning M P, Bissig F, et al.Thickness and structure of the martian crust from InSight seismic data[J].Science, 2021, 373(6553):438-443.
[7] Amenomori M, Bao Y W, Bi X J, et al.Potential PeVatron supernova remnant G106.3+2.7 seen in the highestenergy gamma rays[J].Nature Astronomy, 2021, 5:460-464.
[8] Abeysekara A U, Albert A, Alfaro R, et al.HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon[J].Nature Astronomy, 2021, 5:465-471.
[9] 观测基地全景航拍[EB/OL].(2021-06-25)[2021-11-25].http://www.ihep.cas.cn/lhaaso/kpxc/202106/t20210625_6117360.html.
[10] Cao Z, Aharonian F A, An Q, et al.Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12γ-ray Galactic sources[J].Nature, 2021, 594(7861):33-36.
[11] An Q, Asfandiyarov R, Azzarello P, et al.Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite[J].Science Advances, 2019, 5(9):eaax3793.
[12] Collaboration D, Alemanno F, An Q, et al.Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission[J].Physical Review Letters, 2021, 126(20):201102.
[13] SN 1987A in 2017[EB/OL].(2017-02-24)[2021-12-24].https://www.esa.int/esearch?q=1987A.
[14] Winter W, Lunardini C.A concordance scenario for the observed neutrino from a tidal disruption event[J].Nature Astronomy, 2021, 5:472-477.
[15] Stein R, Velzen S V, Kowalski M, et al.A tidal disruption event coincident with a high-energy neutrino[J].Nature Astronomy, 2021, 5:510-518.
[16] IceCube neutrino observatory[EB/OL].(2018-07-13)[2021-12-13].https://www.esa.int/esearch?q=IceCube.
[17] Aartsen M G, Abbasi R, Ackermann M, et al.Detection of a particle shower at the Glashow resonance with IceCube[J].Nature, 2021, 591(7849):220-224.
[18] Planck's view of the cosmic microwave background[EB/OL].(2013-03-21)[2021-12-11].https://www.esa.int/Newsroom/Photos/Highlights/Planck.
[19] Planck C, Aghanim N, Akrami Y, et al.Planck 2018 results.VI.Cosmological parameters[J].Astronomy and Astrophysics, 2020, 641:A6.
[20] Riess A G, Casertano S, Yuan W L, et al.Cosmic distances calibrated to 1% precision with Gaia EDR3 parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids confirm tension with ΛCDM[J].The Astrophysical Journal Letters, 2021, 908(1):L6.
[21] Di Valentino E, Mena O, Pan S, et al.In the realm of the Hubble tension:A review of solutions[J].Classical and Quantum Gravity, 2021, 38(15):153001.
[22] Hill J C, Calabrese E, Aiola S, et al.The Atacama cosmology telescope:Constraints on pre-recombination early dark energy[J].arXiv e-prints, 2021, arXiv:2109.04451.
[23] Poulin V, Smith T L, Bartlett A.Dark energy at early times and ACT:A larger Hubble constant without latetime priors[J].arXiv e-prints, 2021, arXiv:2109.06229.
[24] Vagnozzi S, Visinelli L, Brax P, et al.Direct detection of dark energy:The XENON1T excess and future prospects[J].Physical Review D, 2021, 104(6):063023.
[25] Jeffrey N, Gatti M, Chang C, et al.Dark energy survey year 3 results:Curved-sky weak lensing mass map reconstruction[J].Monthly Notices of the Royal Astronomical Society, 2021, 505(3):4626.
[26] DES year 3 cosmology results:Papers[EB/OL].(2021-05-27)[2021-11-22].https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/.
[27] 嫦娥五号发射集锦[EB/OL].(2020-11-24)[2021-12-12].http://www.cnsa.gov.cn/n6758823/n6758842/c68105-74/content.html.
[28] Li Q L, Zhou Q, Liu Y, et al.Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts[J].Nature, 2021, 600(7887):54-58.
[29] Hu S, He H C, Ji J L, et al.A dry lunar mantle reservoir for young mare basalts of Chang'e-5[J].Nature, 2021, 600(7887):49-53.
[30] Tian H C, Wang H, Chen Y, et al.Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane[J].Nature, 2021, 600(7887):59-63.
[31] Che X C, Nemchin A, Liu D Y, et al.Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5[J].Science, 2021, 374:887-890.
[32] Deng L C, Yang F, Chen X D, et al.Lenghu on the Tibetan Plateau as an astronomical observing site[J].Nature, 2021, 596(7876):353-356.
[33] 国家天文台在青海冷湖地区发现国际一流光学天文台址[EB/OL].(2021-08-19)[2021-11-12].http://www.nao.cas.cn/xwzx/ttnews/202108/t20210819_6159320.html.
[34] Li Y J, Han M Z, Tang S P, et al.GW190426_152155:A merger of neutron star-black hole or low mass binary black holes[J].arXiv e-prints, 2020, arXiv:2012.04978.
[35] Abbott R, Abbott T D, Abraham S, et al.GW190814:Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object[J].The Astrophysical Journal, 2020, 896(2):L44.
[36] Abbott R, Abbott T D, Abraham S, et al.Observation of gravitational waves from two neutron star-black hole coalescences[J].The Astrophysical Journal Letters, 2021, 915(1):L5.
[37] GW200105 and GW200115[EB/OL].(2021-06-29)[2021-11-22].https://www.ligo.org/detections/NSBH2020.php.
[38] Artist's impression of radio bursting magnetar[EB/OL].(2020-07-28)[2021-11-28].https://www.esa.int/esearch?q=fast+radio+burst.
[39] Younes G, Baring M G, Kouveliotou C, et al.Broadband X-ray burst spectroscopy of the fast-radio-burst-emitting Galactic magnetar[J].Nature Astronomy, 2021, 5:408-413.
[40] Tavani M, Casentini C, Ursi A, et al.An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts[J].Nature Astronomy, 2021, 5:401-407.
[41] Li C K, Lin L, Xiong S L, et al.HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J].Nature Astronomy, 2021, 5:378-384.
[42] Ridnaia A, Svinkin D, Frederiks D, et al.A peculiar hard X-ray counterpart of a Galactic fast radio burst[J].Nature Astronomy, 2021, 5:372-377.
[43] Li D, Wang P, Zhu W W, et al.A bimodal burst energy distribution of a repeating fast radio burst source[J].Nature, 2021, 598(7880):267-271.
[44] Neijssel C J, Vinciguerra S, Vigna-Gómez A, et al.Wind mass-loss rates of stripped stars inferred from cygnus X-1[J].The Astrophysical Journal, 2021, 908(2):118.
[45] Zhao X S, Gou L J, Dong Y T, et al.Re-estimating the spin parameter of the black hole in Cygnus X-1[J].The Astrophysical Journal, 2021, 908(2):117.
[46] Miller-Jones J C A, Bahramian A, Orosz J A, et al.Cygnus X-1 contains a 21-solar mass black hole-Implications for massive star winds[J].Science, 2021, 371(6533):1046-1049.
[47] Collaboration E H T, Akiyama K, Algaba J C, et al.First M87 event horizon telescope results.VII.polarization of the ring[J].The Astrophysical Journal, 2021, 910(1):L12.
[48] Collaboration E H T, Akiyama K, Algaba J C, et al.First M87 event horizon telescope results.VIII.Magnetic field structure near the event horizon[J].The Astrophysical Journal, 2021, 910(1):L13.
[49] Astronomy picture of the day[EB/OL].(2021-03-31)[2021-11-12].https://apod.nasa.gov/apod/ap210331.html.
[50] Burke C J, Shen Y, Blaes O, et al.A characteristic optical variability time scale in astrophysical accretion disks[J].Science, 2021, 373(6556):789-792.
[51] Artist's impression of the James Webb Space Telescope[EB/OL].(2018-03-27)[2021-11-27].https://www.esa.int/ESA_Multimedia/Images/2018/03/Artist_s_impression _of_the_James_Webb_Space_Telescope.