专题:2021年科技热点回眸

2021年天文学热点回眸

  • 赵雪杉 ,
  • 邓舒夏 ,
  • 苟利军
展开
  • 1. 中国科学院国家天文台, 北京 100012;
    2. 中国科学院大学天文和空间科学学院, 北京 100049
赵雪杉,博士研究生,研究方向为恒星级黑洞的基本性质,电子信箱:xszhao@nao.cas.cn;邓舒夏(共同第一作者),编辑,研究方向为科学传播与国际传播,电子信箱:821550081@qq.com

收稿日期: 2021-12-25

  修回日期: 2022-01-05

  网络出版日期: 2022-02-18

基金资助

国家自然科学基金项目(U1838114)

Top astronomy events in 2021

  • ZHAO Xueshan ,
  • DENG Shuxia ,
  • GOU Lijun
Expand
  • 1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China;
    2. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-12-25

  Revised date: 2022-01-05

  Online published: 2022-02-18

摘要

回顾了2021年天文学领域取得的重大进展,盘点了一系列重大的成果和事件:在火星探测方面,多国探测器相继抵达火星并开展科学研究,“洞察号”首次揭秘火星内部构造;中国高海拔宇宙线观测站(LHAASO)观测到1.4 PeV能量的光子;“悟空号”取得氦核70 GeV至80 TeV能段的精确能谱;冰立方中微子天文台(IceCube)捕捉到与潮汐瓦解事件相关的中微子并探测到格拉肖共振事件的粒子簇射;科学家发现宇宙早期暗能量存在的迹象;发布“嫦娥五号”月球样本的最新研究成果;在青海冷湖地区发现世界级光学台址,改善了目前国际所有优良光学天文观测台都位于西半球的局面;首次探测到明确来自黑洞-中子星并合的引力波;发现部分快速射电暴可能起源于磁陀星的观测证据,500 m口径球面射电望远镜(FAST)对FRB 121102进行了深入研究;在黑洞研究方面,科学家为超大质量黑洞提供了一种新的质量测量手段,事件视界望远镜(EHT)发布了M87黑洞偏振图像;在空间天文学方面,韦布空间望远镜发射成功,中国首颗太阳探测科学技术试验卫星“羲和”飞向太阳等。

本文引用格式

赵雪杉 , 邓舒夏 , 苟利军 . 2021年天文学热点回眸[J]. 科技导报, 2022 , 40(1) : 52 -63 . DOI: 10.3981/j.issn.1000-7857.2022.01.003

Abstract

This paper reviews the important progress made in the field of astronomy in 2021, including a series of significant achievements and events, as listed below:probes from various countries arrived on Mars and carried out scientific research; the Insight revealed the interior structure of Mars for the first time; LHAASO observed photons of 1.4 PeV; DAMPE obtained precise energy spectrum covering the energy range 70 GeV to 80 TeV of helium nucleus; IceCube captured neutrino from a tidal disruption event and a particle shower at the Glashow resonance. Astronomers also found the evidence of dark energy existence in the early time of the Universe, released the latest research results of the chang'e-5 samples, found an astronomical optical observing site in Lenghu, which was the best in China, detected the gravitational wave definitely from the neutron-black hole coalescence for the first time, discovered the observational evidence showing some fast radio bursts originated from a magnetar, studied a fast radio burst comprehensively with the help of FAST telescope, proposed a novel method to obtain the mass of a black hole, published the polarized image of black hole M87*. In addition, James Webb Space Telescope was launched, and Chinese Xihe solar satellite was successfully launched as well.

参考文献

[1] 莎拉·斯图尔特·约翰逊.到火星去[M].中国航天液体推进剂研究中心,译.天津:天津人民出版社, 2021.
[2] 天问一号探测器着陆火星首批科学影像图揭幕[EB/OL].(2021-06-11)[2021-11-20].http://www.cnsa.gov.cn/n6758823/n6758838/c6812123/content.html.
[3] Cottaar S, Koelemeijer P.The interior of Mars revealed[J].Science, 2021, 373(6553):388-389.
[4] Stähler S C, Khan A, Banerdt W B, et al.Seismic detection of the martian core[J].Science, 2021, 373(6553):443-448.
[5] Khan A, Ceylan S, Driel M V, et al.Upper mantle structure of Mars from InSight seismic data[J].Science, 2021, 373(6553):434-438.
[6] Knapmeyer-Endrun B, Panning M P, Bissig F, et al.Thickness and structure of the martian crust from InSight seismic data[J].Science, 2021, 373(6553):438-443.
[7] Amenomori M, Bao Y W, Bi X J, et al.Potential PeVatron supernova remnant G106.3+2.7 seen in the highestenergy gamma rays[J].Nature Astronomy, 2021, 5:460-464.
[8] Abeysekara A U, Albert A, Alfaro R, et al.HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon[J].Nature Astronomy, 2021, 5:465-471.
[9] 观测基地全景航拍[EB/OL].(2021-06-25)[2021-11-25].http://www.ihep.cas.cn/lhaaso/kpxc/202106/t20210625_6117360.html.
[10] Cao Z, Aharonian F A, An Q, et al.Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12γ-ray Galactic sources[J].Nature, 2021, 594(7861):33-36.
[11] An Q, Asfandiyarov R, Azzarello P, et al.Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite[J].Science Advances, 2019, 5(9):eaax3793.
[12] Collaboration D, Alemanno F, An Q, et al.Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission[J].Physical Review Letters, 2021, 126(20):201102.
[13] SN 1987A in 2017[EB/OL].(2017-02-24)[2021-12-24].https://www.esa.int/esearch?q=1987A.
[14] Winter W, Lunardini C.A concordance scenario for the observed neutrino from a tidal disruption event[J].Nature Astronomy, 2021, 5:472-477.
[15] Stein R, Velzen S V, Kowalski M, et al.A tidal disruption event coincident with a high-energy neutrino[J].Nature Astronomy, 2021, 5:510-518.
[16] IceCube neutrino observatory[EB/OL].(2018-07-13)[2021-12-13].https://www.esa.int/esearch?q=IceCube.
[17] Aartsen M G, Abbasi R, Ackermann M, et al.Detection of a particle shower at the Glashow resonance with IceCube[J].Nature, 2021, 591(7849):220-224.
[18] Planck's view of the cosmic microwave background[EB/OL].(2013-03-21)[2021-12-11].https://www.esa.int/Newsroom/Photos/Highlights/Planck.
[19] Planck C, Aghanim N, Akrami Y, et al.Planck 2018 results.VI.Cosmological parameters[J].Astronomy and Astrophysics, 2020, 641:A6.
[20] Riess A G, Casertano S, Yuan W L, et al.Cosmic distances calibrated to 1% precision with Gaia EDR3 parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids confirm tension with ΛCDM[J].The Astrophysical Journal Letters, 2021, 908(1):L6.
[21] Di Valentino E, Mena O, Pan S, et al.In the realm of the Hubble tension:A review of solutions[J].Classical and Quantum Gravity, 2021, 38(15):153001.
[22] Hill J C, Calabrese E, Aiola S, et al.The Atacama cosmology telescope:Constraints on pre-recombination early dark energy[J].arXiv e-prints, 2021, arXiv:2109.04451.
[23] Poulin V, Smith T L, Bartlett A.Dark energy at early times and ACT:A larger Hubble constant without latetime priors[J].arXiv e-prints, 2021, arXiv:2109.06229.
[24] Vagnozzi S, Visinelli L, Brax P, et al.Direct detection of dark energy:The XENON1T excess and future prospects[J].Physical Review D, 2021, 104(6):063023.
[25] Jeffrey N, Gatti M, Chang C, et al.Dark energy survey year 3 results:Curved-sky weak lensing mass map reconstruction[J].Monthly Notices of the Royal Astronomical Society, 2021, 505(3):4626.
[26] DES year 3 cosmology results:Papers[EB/OL].(2021-05-27)[2021-11-22].https://www.darkenergysurvey.org/des-year-3-cosmology-results-papers/.
[27] 嫦娥五号发射集锦[EB/OL].(2020-11-24)[2021-12-12].http://www.cnsa.gov.cn/n6758823/n6758842/c68105-74/content.html.
[28] Li Q L, Zhou Q, Liu Y, et al.Two-billion-year-old volcanism on the Moon from Chang'e-5 basalts[J].Nature, 2021, 600(7887):54-58.
[29] Hu S, He H C, Ji J L, et al.A dry lunar mantle reservoir for young mare basalts of Chang'e-5[J].Nature, 2021, 600(7887):49-53.
[30] Tian H C, Wang H, Chen Y, et al.Non-KREEP origin for Chang'e-5 basalts in the Procellarum KREEP Terrane[J].Nature, 2021, 600(7887):59-63.
[31] Che X C, Nemchin A, Liu D Y, et al.Age and composition of young basalts on the Moon, measured from samples returned by Chang'e-5[J].Science, 2021, 374:887-890.
[32] Deng L C, Yang F, Chen X D, et al.Lenghu on the Tibetan Plateau as an astronomical observing site[J].Nature, 2021, 596(7876):353-356.
[33] 国家天文台在青海冷湖地区发现国际一流光学天文台址[EB/OL].(2021-08-19)[2021-11-12].http://www.nao.cas.cn/xwzx/ttnews/202108/t20210819_6159320.html.
[34] Li Y J, Han M Z, Tang S P, et al.GW190426_152155:A merger of neutron star-black hole or low mass binary black holes[J].arXiv e-prints, 2020, arXiv:2012.04978.
[35] Abbott R, Abbott T D, Abraham S, et al.GW190814:Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object[J].The Astrophysical Journal, 2020, 896(2):L44.
[36] Abbott R, Abbott T D, Abraham S, et al.Observation of gravitational waves from two neutron star-black hole coalescences[J].The Astrophysical Journal Letters, 2021, 915(1):L5.
[37] GW200105 and GW200115[EB/OL].(2021-06-29)[2021-11-22].https://www.ligo.org/detections/NSBH2020.php.
[38] Artist's impression of radio bursting magnetar[EB/OL].(2020-07-28)[2021-11-28].https://www.esa.int/esearch?q=fast+radio+burst.
[39] Younes G, Baring M G, Kouveliotou C, et al.Broadband X-ray burst spectroscopy of the fast-radio-burst-emitting Galactic magnetar[J].Nature Astronomy, 2021, 5:408-413.
[40] Tavani M, Casentini C, Ursi A, et al.An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts[J].Nature Astronomy, 2021, 5:401-407.
[41] Li C K, Lin L, Xiong S L, et al.HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J].Nature Astronomy, 2021, 5:378-384.
[42] Ridnaia A, Svinkin D, Frederiks D, et al.A peculiar hard X-ray counterpart of a Galactic fast radio burst[J].Nature Astronomy, 2021, 5:372-377.
[43] Li D, Wang P, Zhu W W, et al.A bimodal burst energy distribution of a repeating fast radio burst source[J].Nature, 2021, 598(7880):267-271.
[44] Neijssel C J, Vinciguerra S, Vigna-Gómez A, et al.Wind mass-loss rates of stripped stars inferred from cygnus X-1[J].The Astrophysical Journal, 2021, 908(2):118.
[45] Zhao X S, Gou L J, Dong Y T, et al.Re-estimating the spin parameter of the black hole in Cygnus X-1[J].The Astrophysical Journal, 2021, 908(2):117.
[46] Miller-Jones J C A, Bahramian A, Orosz J A, et al.Cygnus X-1 contains a 21-solar mass black hole-Implications for massive star winds[J].Science, 2021, 371(6533):1046-1049.
[47] Collaboration E H T, Akiyama K, Algaba J C, et al.First M87 event horizon telescope results.VII.polarization of the ring[J].The Astrophysical Journal, 2021, 910(1):L12.
[48] Collaboration E H T, Akiyama K, Algaba J C, et al.First M87 event horizon telescope results.VIII.Magnetic field structure near the event horizon[J].The Astrophysical Journal, 2021, 910(1):L13.
[49] Astronomy picture of the day[EB/OL].(2021-03-31)[2021-11-12].https://apod.nasa.gov/apod/ap210331.html.
[50] Burke C J, Shen Y, Blaes O, et al.A characteristic optical variability time scale in astrophysical accretion disks[J].Science, 2021, 373(6556):789-792.
[51] Artist's impression of the James Webb Space Telescope[EB/OL].(2018-03-27)[2021-11-27].https://www.esa.int/ESA_Multimedia/Images/2018/03/Artist_s_impression _of_the_James_Webb_Space_Telescope.
文章导航

/