[1] Darwin C. The formation of vegetable mould through the action of worms:With observations on their habits[M]. London:John Murray, 1881.
[2] Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515(7528):505-511.
[3] 褚海燕,王艳芬,时玉,等.土壤微生物生物地理学研究现状与发展态势[J].中国科学院院刊, 2017, 32(6):585-592.
[4] Martiny J B H, Bohannan B J M, Brown J H, et al. Microbial biogeography:Putting microorganisms on the map[J]. Nature Reviews Microbiology, 2006, 4(2):102-112.
[5] Bahram M, Hildebrand F, Forslund S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717):233-237.
[6] Phillips H R P, Guerra C A, Bartz M L C, et al. Global distribution of earthworm diversity[J]. Science, 2019, 366(6464):480-485.
[7] Hector A, Bagchi R. Biodiversity and ecosystem multifunctionality[J]. Nature, 2007, 448(7150):188-190.
[8] Manning P, van der P F, Soliveres S, et al. Redefining ecosystem multifunctionality[J]. Nature Ecology & Evolution, 2018, 2(3):427-436.
[9] Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14):5266-5270.
[10] Wagg C, Schlaeppi K, Banerjee S, et al. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10(1):4841.
[11] Chen Q L, Ding J, Zhu D, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils[J]. Soil Biology and Biochemistry, 2020, 141:107686.
[12] Chen Q L, Ding J, Zhu Y G, et al. Soil bacterial taxonomic diversity is critical to maintaining the plant productivity[J]. Environment International, 2020, 140:105766.
[13] Delgado-Baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature communications, 2016, 7:10541.
[14] Lynch M D J, Neufeld J D. Ecology and exploration of the rare biosphere[J]. Nature Reviews Microbiology, 2015, 13(4):217-229.
[15] Rivett D W, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities[J]. Nature Microbiology, 2018, 3(7):767-772.
[16] Banerjee S, Schlaeppi K, van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9):567-576.
[17] Fan K K, Delgado-Baquerizo M, Guo X S, et al. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J]. The ISME Journal, 2021, 15(2):550-561.
[18] Bond-Lamberty B, Bailey V L, Chen M, et al. Globally rising soil heterotrophic respiration over recent decades[J]. Nature, 2018, 560(7716):80-83.
[19] Geisen S, Wall D H, van der Putten W H. Challenges and opportunities for soil biodiversity in the anthropocene[J]. Current Biology, 2019, 29(19):1036-1044.
[20] Seibold S, Gossner M M, Simons N K, et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers[J]. Nature, 2019, 574(7780):671-674.
[21] Delgado-Baquerizo M, Guerra C A, Cano-Díaz C, et al. The proportion of soil-borne pathogens increases with warming at the global scale[J]. Nature Climate Change, 2020, 10(6):550-554.
[22] Zhao Z B, He J Z, Geisen S, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils[J]. Microbiome, 2019, 7(1):33.
[23] Rillig M C, Ryo M, Lehmann A, et al. The role of multiple global change factors in driving soil functions and microbial biodiversity[J]. Science, 2019, 366(6467):886-890.
[24] Lehmann J, Bossio D A, Kogel-Knabner I, et al. The concept and future prospects of soil health[J]. Nature Reviews Earth & Environment, 2020, 1(10):544-553.
[25] 朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学:生命科学, 2021, 51(1):1-11.
[26] 陈保冬,赵方杰,张莘,等.土壤生物与土壤污染研究前沿与展望[J].生态学报, 2015, 35(20):6604-6613.
[27] Singh B K, Quince C, Macdonald C A, et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions[J]. Environmental Microbiology, 2014, 16(8):2408-2420.
[28] 陈保冬,张莘,伍松林,等.丛枝菌根影响土壤-植物系统中重金属迁移、转化和累积过程的机制及其生态应用[J].岩矿测试, 2019, 38(1):1-25.
[29] van den Hoogen J, Geisen S, Routh D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572(7768):194-198.
[30] Oliverio A M, Geisen S, Delgado-Baquerizo M, et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Science Advances, 2020, 6(4):eaax8787.
[31] Geisen S, Hu S R, dela Cruz T E E, et al. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes[J]. The ISME Journal, 2021, 15(2):618-621.
[32] Morri & #235;n E, Hannula S E, Snoek L B, et al. Soil networks become more connected and take up more carbon as nature restoration progresses[J]. Nature Communications, 2017, 8:14349.
[33] Gao Z L, Karlsson I, Geisen S, et al. Protists:Puppet masters of the rhizosphere microbiome[J]. Trends in Plant Science, 2019, 24(2):165-176.
[34] Jiang Y J, Luan L, Hu K J, et al. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences[J]. Microbiome, 2020, 8(1):142.
[35] Saleem M, Hu J, Jousset A. More than the sum of its parts:Microbiome biodiversity as a driver of plant growth and soil health[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50(1):145-168.
[36] 孙新,李琪,姚海凤,等.土壤动物与土壤健康[J].土壤学报, 2021, 58(5):1073-1083.
[37] Wei Z, Gu Y, Friman V P, et al. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9):eaaw0759.
[38] Delgado-Baquerizo M, Reich P B, Trivedi C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology & Evolution, 2020, 4(2):210-220.
[39] de Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488):270-274.
[40] 朱冬,陈青林,丁晶,等.土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J].中国科学:生命科学, 2019, 49(12):1652-1663.
[41] Zhu D, Xiang Q, Yang X R, et al. Trophic transfer of antibiotic resistance genes in a soil detritus food chain[J]. Environmental Science & Technology, 2019, 53(13):7770-7781.
[42] Zheng F, Bi Q F, Giles M, et al. Fates of antibiotic resistance genes in the gut microbiome from different soil fauna under long-term fertilization[J]. Environmental Science & Technology, 2021, 55(1):423-432.
[43] Hu H W, Wang J T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2017, 51(2):790-800.
[44] Li M, Wei Z, Wang J N, et al. Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters, 2019, 22(1):149-158.
[45] Biessy A, Filion M. Phenazines in plant-beneficial Pseudomonas spp.:Biosynthesis, regulation, function and genomics[J]. Environmental Microbiology, 2018, 20(11):3905-3917.
[46] Xiong W, Song Y Q, Yang K M, et al. Rhizosphere protists are key determinants of plant health[J]. Microbiome, 2020, 8(1):27.
[47] Wang X F, Wei Z, Yang K M, et al. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12):1513-1520.
[48] Hou S J, Thiergart T, Vannier N, et al. A microbiotaroot-shoot circuit favours Arabidopsis growth over defence under suboptimal light[J]. Nature Plants, 2021(7):1078-1092.